Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Погрешность метода Симпсона пропорциональна 0( )-и имеет порядок .






Метод 24

Метод Гаусса

В предыдущих методах при численном интегрировании подинтегральную функцию вычисляют в равноотстоящих друг от друга узлах. В методе Гаусса для повышения точности численного интегрирования значения подинтегральной функции вычисляют в специально подобранных узлах.

Рассмотрим сначала стандартный отрезок и зададим число m= числу узлов, в которых вычисляется подинтегральная функция. Координаты этих узлов обозначим

и получим для определённого интеграла приближенное выражение

 

(1.1)

Узлы подбирают таким образом, чтобы обеспечить максимальную точность выражения (1.1).

Она будет максимальной в том случае, если узлы будут соответствовать корням полиномов Лагранжа.

Метод Гаусса представляет собой группу методов различающихся числом узлов. Значения параметров , для m=2; 3 запишем в таблицу.

m j №метода
       
   
    0, 7745967  
   
  0, 7745967

 

С помощью формулы Гаусса (1.1) с m-узлами на стандартном отрезке можно получить формулу для вычисления интеграла на произвольном отрезке .

Для этого разбиваем отрезок на n равных частичных отрезков. На каждом отрезке

Задаём m узлов с помощью формулы

i – это номер частичного отрезка;

j – это номер узла в каждом частичном отрезке.

Для

Метод 24 даёт точные значения интеграла для полиномов степени , при m=2 метод Симпсона и метод Гаусса имеют приблизительно одинаковую точность. Однако метод Симпсона более удобен, так как для него узлы расположены равномерно, поэтому метод Гаусса целесообразно использовать при m> 2.

Метод 26

Метод Монте-Карло

Во многих задачах исходные данные носят случайный характер. Для решения таких задач применяется статистико-вероятностный подход. На основе такого подхода разработан метод статистических испытаний, называемый также методом Монте-Карло. В методе Монте-Карло для случайной величины X с определённым законом распределения находится математическое ожидание, причем в качестве приблизительного значения математического ожидания можно использовать среднее значение из серии испытаний случайной величины X.

Это соотношение можно использовать для приближенного вычисления интеграла. Пусть Т – это случайная величина равномерно распределённая на отрезке . Равномерность распределения означает, что плотность распределения этой случайной величины во всех точках отрезка имеет одинаковое значение равное единице. То есть плотность распределения для этой случайной величины равна

В компьютерах встроены генераторы случайных чисел, имеющие нормальное распределение. Для вычисления по определению математического ожидания используется следующая формула

где, - это случайные числа равномерно распределённые на .

Тогда

При вычислении интеграла на путем замены интеграл приводится к отрезку если отрезок разбить на n частей, и каждый отрезок преобразовать в единичный, то для интеграла по

где - это случайное число на .

Метод 27

Метод Монте-Карло для вычисления кратных интегралов

Особенно эффективно применение метода Монте-Карло для вычисления кратных интегралов. Например, двойной интеграл по области в виде единичного квадрата может быть представлен в виде

где - это случайные числа, равномерно распределённые на интервале

При интегрировании по прямоугольнику R, не совпадающему с единичным квадратом, необходимо сначала произвести преобразование переменных.

 

 

 

Обобщим метод Монте-Карло на область произвольной конфигурации. Пусть требуется вычислить двойной интеграл по области произвольной конфигурации.

 

 

Построим прямоугольник R охватывающий область и введём функцию, совпадающую с области и равную нулю за пределами области .

Очевидно, что искомый интеграл

 

Точность зависит от качества генератора, не совсем точная (равномерная плотность распределения).

 

Тема №7

Решение обыкновенных дифференциальных уравнений (ОДУ)

 

К решению дифференциальных уравнений приводит большое число научно-исследовательских задач и задач инженерной практики, но лишь не многие из них удается решить аналитически, поэтому численные методы решения дифференциальных уравнений играют такую важную роль в инженерной практике.

Дифференциальные уравнения, содержащие одну независимую переменную и производные по ней, называются обыкновенными дифференциальными уравнениями.

Для решения дифференциального уравнения необходимо задание дополнительных условий, если дополнительные условия задаются при одном значении независимой переменной, то такие условия называются начальными, а задача решения уравнения называется задачей с начальными условиями или задача Коши.

Если условия задаются при двух или более значениях переменной, то такие условия называются граничными, а задачу называют краевой.

В задаче Коши роль независимой переменной играет величина (время), а дополнительное условие для начального момента времени (). В краевых задачах в качестве независимой переменной выступает координата отрезка, а граничные условия задаются в начале и конце отрезка.

Для решения задачи Коши и краевой принимают различные численные методы. Часто краевую задачу решают путем сведения её к задаче Коши. Отсюда следует, что обычно задачи Коши являются более легкими для численного решения.

При численном решении вводится шаг по координате, и решение находится в точках отстоящих друг от друга на величину шага. Для решения задачи Коши разработано множество методов, которые можно разделить на 2 группы:

1 группа – одношаговые методы.

В них для нахождения решения в следующей точке (удаленной на расстояние h) требуется информация лишь об одном предыдущем шаге.

2 группа – многошаговые методы.

Методы прогноза и коррекции.

В них для нахождения значения в следующей точке требуется информация из нескольких предыдущих точек.

При численном решении дифференциальных уравнений можно выделить 3 типа погрешности:

1) погрешность округления;

2) погрешность усечения, связана с аппроксимацией бесконечных рядов несколькими первыми членами, обусловлена численным методом;

3) погрешность распространения, она является результатом накопления погрешностей появившихся на предыдущих этапах счета.

 

Метод 28

Метод Эйлера

Простейшим методом решения обыкновенного дифференциального уравнения первого порядка является метод Эйлера.

Требуется найти . Как зависит от .

Будем находить решение в точках отстоящих друг от друга на расстоянии h (шаг задачи). Допустим решение в точке известно, и требуется найти значение неизвестной в точке . Разложим решение в окрестности точки в ряд Тейлора:

В этом ряде ограничимся первыми двумя слагаемыми

 

В результате получаем простейшую формулу

, которая реализует метод Эйлера.

, ,

точность

 

погрешность на одном шаге.

Таким образом, погрешность метода Эйлера равна .

Метод 29

Модифицированный метод Эйлера

Точность метода Эйлера можно существенно повысить, улучшив аппроксимацию производной. В модифицированном методе Эйлера сначала вычисляется значение,

которое используется для вычисления приближенного значения производной в конце интервала . Значение производной полагают равным .

Мы нашли, что в начале интервала значение производной равно

, а в конце

Для нахождения на интервале удобно использовать среднее значение.

Такое представление производной тождественно использованию в ряде Тейлора членов пропорциональных .

 

Метод 30

Метод Рунге – Кутта

Это метод, который позволяет учесть в ряде Тейлора члены, содержащие старшие производные.

Для этого при вычислении старших производных используется результаты расчетов в точках внутри интервала. Метод Рунге – Кутта объединяет целое семейство методов решения дифференциальных уравнений первого порядка. Отличаются эти методы порядком точности, т.е. числом слагаемых в ряде Тейлора.

Наиболее распространенным является метод, при котором удерживаются члены пропорциональные (метод 4-го порядка точности) когда говорят метод Рунге-Кутта, то имеют в виду метод четвёртого порядка.

Расчеты в этом методе производятся по следующим формулам

 

Метод 31

Метод Рунге-Кутта для решения систем ОДУ

Метод Рунге – Кутта может применяться для решения систем дифференциальных уравнений первого порядка. Например: при решении системы

 

найдем

 

В этом случае расчеты производятся по следующим формулам:

 

 

 

 

Метод 32

Метод Рунге-Кутта для ОДУ высших порядков

Метод Рунге – Кутта можно использовать для решения дифференциальных уравнений высокого порядка (второго или более высокого). Для этого дифференциальное уравнение сводится к системе уравнений первого порядка.

Например: дифференциальное уравнение второго порядка:

 

Введём переменную , в результате решаемая задача приводится к следующей задаче:

получили систему двух уравнений первого порядка.

 

Метод 33

Метод стрельбы

Методы решения задачи Коши могут быть использованы при решении краевых задач. В качестве примера рассмотрим один из методов решения краевой задачи для дифференциального уравнения второго порядка, который называется методом стрельбы.

Решается дифференциальное уравнение второго порядка:

 

Заменим эту краевую задачу задачей Коши

Задача сводится к тому, чтобы найти такой угол , чтобы в точке решение равнялось .

Эта задача зависит от угла , как от параметра:

И нужно чтобы

Решение этого уравнения есть . Найдя, мы тем самым решим задачу как методом Коши.

Метод 34

Метод конечных разностей (МКР) (метод сеток).

Одним из универсальных методов решения краевых задач является метод конечных разностей.

Рассмотрим применение МКР для решения линейного дифференциального уравнения второго порядка.

Пусть требуется найти дифференциальное уравнение:

 

заданы краевые условия

Разбиваем отрезок узловыми равноотстоящими точками на частных отрезков. В каждой внутренней узловой точке аппроксимируем, производные с помощью разностных соотношений и записываем решаемое дифференциальное уравнение (1) для каждой внутренней узловой точки. В результате получается система алгебраических уравнений для нахождения неизвестных значений функции

Рассмотрим узловую точку

 

Аппроксимируем решаемое дифференциальное уравнение для узловой точки . Для этого

 

 

 

получили приблизительное значение производной.

 

Подставим найденные значения в дифференциальное уравнение. Найдем, что в узле дифференциальное уравнение приблизительно заменяется следующим алгебраическим уравнением:

 

 

Аналогичное соотношение можно записать для каждого внутреннего узла. В результате получается система линейных алгебраических уравнений; число этих уравнений равно числу неизвестных значений , решаем систему и находим неизвестные.

Замечание: полученная система СЛАУ имеет трехдиагональную матрицу, поэтому решать полученную систему удобно с помощью метода прогонки.

Тема №8

Решение дифференциальных уравнений с частными производными

Во многих практических важных задачах искомая функция зависит от нескольких переменных. Например, от трех координат и времени. Дифференциальные уравнения, описывающие такие задачи, могут содержать частные производные от искомой функции, такие уравнения называют дифференциальными уравнениями с частными производными. Наиболее практическое значение имеют дифференциальные уравнения с частными производными первого и особенно второго порядка. Такие уравнения называют уравнениями математической физики.

Различают уравнения математической физики трех типов:

1) параболический

2) гиперболический

3) эллиптический.

Тип уравнения зависит от соотношений между коэффициентами перед старшими производными. Способ решения уравнения математической физики существенным образом зависит от типа уравнения.

Существует множество аналитических методов решения уравнения математической физики. Однако круг задач, решаемых аналитически, весьма ограничен и поэтому для решения уравнения математической физики применяют численные методы. Таких методов тоже очень много. Мы рассмотрим один из них.

Этот метод относится к универсальным методам решения. Этот метод наиболее изучен и разработан. Широко используется также метод конечных элементов (МКЭ), метод граничных элементов (МГЭ) и другие методы.

Рассмотрим решение уравнения параболического типа с помощью метода сеток. Типичным примером одномерного уравнения параболического типа является уравнение теплопроводности:






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.