Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Этапы решения технических задач на ЭВМ






 

Реальные инженерные и физические задачи во всех областях науки и техники обычно решаются посредством использования двух подходов:

– физического эксперимента;

– предварительного анализа конструкций, схем, явлений с целью выбора каких-то их оптимальных параметров.

Первый подход связан с большими и не всегда оправданными затратами материальных и временных ресурсов.

Второй подход связан с математическим моделированием, в основе которого заложены знания фундаментальных законов природы и построение на их основе математических моделей для произвольных технических и научных задач.

Математические модели представляют собой упрощенное описание исследуемого явления с помощью математических символов и операций над ними. Математические модели разрабатываются с соблюдением корректности и адекватности по отношению к реальным процессам, но, как правило, с учетом простоты их технической реализации.

Практика показывает, что возникающие и истребованные технические решения во многом однозначны, что определяет ограниченное число существенно полезных математических моделей, извлекаемых из стандартного справочника «Курс высшей математики». К примеру, из арсенала этих моделей можно назвать такие как линейные и нелинейные уравнения, системы линейных и нелинейных уравнений, дифференциальные уравнения (ДУ), разновидности интегралов, функциональные зависимости, «целевые» функции для решения задач оптимизации и др.

При математическом моделировании важным моментом является первоначальная математическая постановка задачи. Она предполагает описание математической модели и указания цели ее исследования. Для одной и той же математической модели могут быть сформулированы и решены различные математические задачи. Например, для наиболее распространенной модели, такой как функциональная зависимость y = f (x) могут быть сформулированы следующие математические задачи:

1) найти экстремальное значение функции f (x): max f (x) или min f (x);

2) найти значение x, при котором f (x) = 0;

3) найти значение производной f ' (x), значение интеграла и т.д.

Бурное развитие вычислительной техники выдвинуло на передний план при решении практических инженерных и научных задач вычислительную математику и программирование.

Вычислительная математика изучает построение и исследование численных методов решения математических задач посредством реализации соответствующих математических моделей.

Программирование обеспечивает техническую реализацию их.

Обобщенную схему математического моделирования можно представить следующим образом:

 

 

При реализации данного цикла требуют пристального внимания все его компоненты. Заключительным его этапом является получение численного результата и сопоставление его с целевой установкой и, как правило, для достижения желаемого, или приемлемого результата, всегда возникает необходимость изменения или математической модели, или вычислительного метода, или алгоритма, или программы.

Следует подчеркнуть важность и таких этапов данной технологии решения задач на ЭВМ как проведение расчетов и анализ результатов. (А именно, подготовка исходных данных, обоснование выбора вычислительного метода, корректность и точность решения). Важным моментом является также экономичность выбора: способа решения задачи, численного метода, модели ЭВМ, вычислительной среды.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.