Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Понятие аппроксимации






Одной из наиболее часто встречающихся задач является установление характера зависимости между различными величинами, что позволяет по значению одной величины определить значение другой. Математической моделью зависимости одной величины от другой является понятие функции y = f (x).

В практике расчетов, связанных с обработкой экспериментальных данных, вычислением f (x), разработкой вычислительных методов, встречаются следующие ситуации:

- установить вид функции y = f (x), если известны только некоторые значения, заданные таблицей {(xi, yi), i = 1, …, m };

- упростить вычисление известной функции f (x) или ее характеристик (производной, максимума и т.п.), если f (x) имеет слишком сложный вид.

Ответы на эти вопросы даются теорией аппроксимации функций, основная задача которой состоит в нахождении функции y = j(x), близкой (т.е. аппроксимирующей) к исходной функции.

Основной подход к решению этой задачи заключается в том, что аппроксимирующая функция j(x)выбирается зависящей от нескольких свободных параметров , т.е. , значения которых подбираются из условия близости f (x)и j(x).

В зависимости от способа подбора параметров вектора получают различные методы аппроксимации.

Наиболее простой является линейная аппроксимация, при которой выбирают функцию , линейно зависящую от параметров , т.е. в виде обобщенного многочлена:

. (8.1)

Здесь {j1(x), …, j n (x)} – известная система линейно независимых функций, в качестве которых могут быть выбраны любые элементарные функции или их комбинации. Важно, чтобы эта система была полной, т.е. обеспечивающей аппроксимацию f (x) многочленом (8.1) с заданной точностью при .

При интерполяции обычно используется система линейно независимых функций {j k (x) = xk -1}. Для среднеквадратичной аппроксимации удобнее в качестве j k (x) брать ортогональные на интервале [-1, 1] многочлены Лежандра:

{j1(x) = 1; j2(x) = х; j k +1(x) = [(2 k + 1) x j k (x) - k j k -1(x)]; k = 2, 3, …, n };

.

Интерполяция является одним из способов аппроксимации функций. Суть ее состоит в следующем. В области значений x, представляющей некоторый интервал [ a, b ], где функции f и jдолжны быть близки, выбирают упорядоченную систему точек (узлов) (обозначим ), число которых равно количеству искомых параметров . Далее параметры подбирают такими, чтобы функция совпадала с f (x)в этих узлах, для чего решают полученную систему из n алгебраических уравнений.

В случае линейной аппроксимации (8.1) система для нахождения коэффициентов линейна и имеет следующий вид:

. (8.2)

Для большинства практически важных приложений при интерполяции наиболее удобны обычные алгебраические многочлены.

Интерполяционным многочленом называют алгебраический многочлен степени n - 1, совпадающий с аппроксимируемой функцией в выбранных n точках.

Общий вид алгебраического многочлена

. (8.3)

Наиболее часто в приложениях используют интерполяционные многочлены в форме Лагранжа и Ньютона, т.к. многочлены в этой форме прямо записаны через значения таблицы {(xi, yi), i = 1, …, n }.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.