Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Принципы (закономерности) спортивной тренировки как важнейшие теоретико-методические положения, отражающие специфические особенности построения тренировочного процесса. 3 страница






Психологические обследования позволяют оценить проявление таких качеств, как активность и упорство в спортивной борьбе, самостоятельность, целеустремленность, спортивное трудолюбие, способность мобилизоваться во время соревнований и т.п. Роль психологических обследований за спортсменами возрастает на третьем и четвертом этапах отбора.Таблица 43

Сила, подвижность и уравновешенность нервных процессов являются в значительной мере природными свойствами центральной нервной системы человека. Они с большим трудом поддаются совершенствованию в процессе многолетней тренировки. Особое внимание обращается на проявление у спортсменов самостоятельности, решительности, целеустремленности, способности мобилизовать себя на проявление максимальных усилий в соревновании, реакцию на неудачное выступление в нем, активность и упорство в спортивной борьбе, способность максимально проявить свои волевые качества на финише и др. Учитывается также спортивное трудолюбие.

С целью выявления волевых качеств спортсмена целесообразно давать контрольные задания, лучше в соревновательной форме. Показателем интенсивности проявления волевых усилий спортсмена служит успешное выполнение упражнений с кратковременным напряжением, показателем настойчивости — выполнение относительно сложных в координационном отношении упражнений для освоения специальных упражнений и т.п. Следует подчеркнуть необходимость всестороннего изучения личности, а не отдельных его способностей. Поэтому их оценка должна даваться в процессе тренировки, соревнований, а также в лабораторных условиях.

Социологические обследования выявляют интересы детей и подростков к занятиям тем или иным видом спорта, эффективные средства и методы формирования этих интересов, формы соответствующей разъяснительной и агитационной работы среди детей школьного возраста.

Окончательное решение о привлечении детей к занятиям тем или иным видом спорта должно основываться на комплексной оценке всех перечисленных данных, а не на учете какого-либо одного или д§ух показателей. Особая важность комплексного подхода на первых этапах отбора обусловлена тем, что спортивный результат здесь практически не несет информации о перспективности юного спортсмена. Процесс отбора тесно связан с этапами спортивной подготовки и особенностями вида спорта (возраст начала занятий, возраст углубленной специализации в избранном виде спорта, классификационные нормативы и т.д.).

На третьем этапе отбора с целью поиска перспективных спортсменов и зачисления их в центры олимпийской подготовки, СДЮШОР и УОР проводится обследование соревновательной деятельности спортсменов с экспертной оценкой и с последующим их тестированием в ходе республиканских соревнований для младших юношеских групп, т.е. в том возрасте, когда комплектуются группы спортивного совершенствования.

На четвертом этапе отбора в каждом олимпийском виде спорта должны проводиться просмотровые учебно-тренировочные сборы. Отбор кандидатов осуществляется с учетом следующих показателей:

1) спортивно-технические результаты и их динамика (начало, вершина, спад) по годам подготовки);

2) степень закрепления техники выполнения наиболее неустойчивых элементов при выполнении упражнения в экстремальных условиях;

3) степень технической готовности и устойчивости спортсмена к сбивающим факторам в условиях соревновательной деятельности.

По итогам соревнований, а затем и комплексного обследования тренерские советы определяют контингент спортсменов, индивидуальные показатели которых соответствуют решению задач предолимпийской подготовки. Отбор кандидатов в основные составы сборных команд областей, краев, России осуществляется на основе учета двигательного потенциала, дальнейшего развития физических качеств, совершенствования функциональных возможностей организма спортсмена, освоения новых двигательных навыков, способности к перенесению высоких тренировочных нагрузок, психической устойчивости спортсмена в соревнованиях. В процессе этого этапа отбора кандидатов учитываются следующие компоненты: уровень специальной физической подготовленности; уровень спортивно-технической подготовленности; уровень тактической подготовленности; уровень психической подготовленности; состояние здоровья.

Основной формой отбора кандидатов в сборные команды страны служат спортивные соревнования. При этом учитываются не только сегодняшние спортивные результаты, но и их динамика на протяжении двух-трех последних лет, динамика результатов в течение текущего года, стаж регулярных занятий спортом, соответствие основных компонентов физической подготовленности и физического развития требованиям данного вида спорта на уровне результатов мастера спорта международного класса.

 

 

Влияние гипокинезии и гиподинамии на функциональное состояние человека. Физиологическое обоснование оздоровительных физических нагрузок у лиц разного возраста. Физиологическая характеристика различных средств физической культуры (ходьба, бег, плавание, ритмическая, атлетическая и утренняя гимнастика).

Понятия гипокинезия и гиподинамия

Для обеспечения нормальной жизнедеятельности организма человека необходима достаточная активность скелетных мышц. Работа мышечного аппарата способствует развитию мозга и установлению межцентральных и межсенсорных взаимосвязей. Двигательная деятельность повышает энергопродукцию и образование тепла, улучшает функционирование дыхательной, сердечно-сосудистой и других систем организма. Недостаточность движений нарушает нормальную работу всех систем и вызывает появление особых состояний – гипокинезии и гиподинамии.

Гипокинезия – это пониженная двигательная активность. Она может быть связана с физиологической незрелостью организма, с особыми условиями работы в ограниченном пространстве, с некоторыми заболеваниями и др. причинами. В некоторых случаях (гипсовая повязка, постельный режим) может быть полное отсутствие движений или акинезия, которая переносится организмом еще тяжелее.

Существует и близкое понятие — гиподинамия. Это понижение мышечных усилий, когда движения осуществляются, но при крайне малых нагрузках на мышечный аппарат. В обоих случаях скелетные мышцы нагружены совершенно недостаточно. Возникает огромный дефицит биологической потребности в движениях, что резко снижает функциональное состояние и работоспособность организма.

Некоторые животные очень тяжело переносят отсутствие движений. Например, при содержании крыс в течение 1 месяца в условиях акинезии выживает 60% животных, а в условиях гипокинезии – 80%. Цыплята, выращенные в условиях обездвижения в тесных клетках и выпущенные затем на волю, погибали при малейшей пробежке по двору.

Тяжело переносится снижение двигательной активности человеком. Обследование моряков-подводников показало, что после 1, 5 месяцев пребывания в море сила мышц туловища и конечностей уменьшалась на 20-40% от исходной, а после 4 месяцев плавания – на 40-50%. Наблюдались и другие нарушения.

 

Гиподинамия

Последствия гиподинамии

Еще в древности было замечено, что физическая активность способствует формированию сильного и выносливого человека, а неподвижность ведет к снижению работоспособности, заболеваниям и тучности. Все это происходит вследствие нарушения обмена веществ. Уменьшение энергетического обмена, связанное с изменением интенсивности распада и окисления органических веществ, приводит к нарушению биосинтеза, а также к изменению кальциевого обмена в организме. Вследствие этого в костях происходят глубокие изменения. Прежде всего, они начинают терять кальций. Это приводит к тому, что кость делается рыхлой, менее прочной. Кальций попадает в кровь, оседает на стенках кровеносных сосудов, они склерозируются, т. е. пропитываются кальцием, теряют эластичность и делаются ломкими. Способность крови к свертыванию резко возрастает. Возникает угроза образования кровяных сгустков (тромбов) в сосудах. Содержание большого количества кальция в крови способствует образованию камней в почках.

Отсутствие мышечной нагрузки снижает интенсивность энергетического обмена, что отрицательно сказывается на скелетных и сердечной мышцах. Кроме того, малое количество нервных импульсов, идущих от работающих мышц, снижает тонус нервной системы, утрачиваются приобретенные ранее навыки, не образуются новые. Все это самым отрицательным образом отражается на здоровье. Следует учесть также следующее. Сидячий образ жизни приводит к тому, что хрящ постепенно становится менее эластичным, теряет гибкость. Это может повлечь снижение амплитуды дыхательных движений и потерю гибкости тела. Но особенно сильно от неподвижности или малой подвижности страдают суставы.

Характер движения в суставе определен его строением. В коленном суставе ногу можно только сгибать и разгибать, а в тазобедренном суставе движения могут совершаться во всех направлениях. Однако амплитуда движений зависит от тренировки. При недостаточной подвижности связки теряют эластичность. В полость сустава при движении выделяется недостаточное количество суставной жидкости, играющей роль смазки. Все это затрудняет работу сустава. Недостаточная нагрузка влияет и на кровообращение в суставе. В результате питание костной ткани нарушается, формирование суставного хряща, покрывающего головку и суставную впадину сочленяющихся костей, да и самой кости идет неправильно, что приводит к различным заболеваниям. Но дело не ограничивается только этим. Нарушение кровообращения может привести к неравномерному росту костной ткани, вследствие чего возникает разрыхление одних участков и уплотнение других. Форма костей в результате этого может стать неправильной, а сустав потерять подвижность.


Заболевания костно-мышечного аппарата

Гиподинамия — не единственная причина, вызывающая нарушения в скелете. Неправильное питание, недостаток витамина D, заболевания паращито-видных желез — вот далеко не полный перечень причин, нарушающих функцию скелета, особенно у детей. Так, при недостатке в пище витамина D у ребенка развивается рахит. При этом уменьшается поступление в организм кальция и фосфора, вследствие чего кости ног под действием тяжести тела искривляются. За счет неправильного окостенения образуются утолщения на ребрах, головках пальцевых костей, нарушается нормальный рост черепа. При рахите страдает не только скелет, но и мышцы, эндокринная и нервная системы. Ребенок делается раздражительным, плаксивым, пугливым. Витамин D может образовываться в организме под влиянием ультрафиолетовых лучей, поэтому солнечные ванны и искусственное облучение кварцевой лампой предупреждают развитие рахита.

Причиной заболевания суставов могут стать очаги гнойной инфекции при поражении миндалин, среднего уха, зубов и т. д. Грипп, ангина, сильное переохлаждение могут предшествовать заболеванию одного или нескольких суставов. Они припухают, болят, движения в них затрудняются. В суставах нарушается нормальный рост костной и хрящевой ткани, в особо тяжелых случаях сустав теряет подвижность. Вот почему важно следить за состоянием зубов, горла и носоглотки.

Повредить суставы можно и чрезмерной тренировкой. При длительном катании на лыжах, беге, прыжках происходит истончение суставного хряща, иногда страдают коленные мениски. В коленном суставе между бедренной и большой берцовой костями находятся хрящевые прокладки — мениски. Каждый коленный сустав имеет два мениска — левый и правый. Внутри хрящевого мениска находится жидкость. Она амортизирует резкие толчки, которые тело испытывает при движениях. Нарушение целостности менисков вызывает резкую боль и сильную хромоту.

 

Гипокинезия

Феноменологическая картина гипокинезии

Тот факт, что двигательная активность совершенствует физические особенности, повышает работоспособность, общеизвестен. Он подтвержден неоднократно в специальных экспериментах и наблюдениях.

Не менее известно, что научно-техническая революция ведет к уменьшению доли тяжелого физического труда и на производстве, и в быту, а, следовательно, к неуклонному снижению доли активной двигательной деятельности. Каковы же причины неблагоприятных последствий гипокинезии?

Снижение двигательной активности приводит к нарушению слаженности в работе мышечного аппарата и внутренних органов вследствие уменьшения интенсивности проприоцептивной импульсации из скелетных мышц в центральный аппарат нейрогуморальной регуляции (стволовый отдел мозга, подкорковые ядра, кору полушарий большого мозга).

На уровне внутриклеточного обмена гипокинезия приводит к снижению воспроизводства белковых структур: нарушаются процессы транскрипции и трансляции (снятие генетической программы и ее реализация в биосинтезе). При гипокинезии изменяется структура скелетных мышц и миокарда. Падает иммунологическая активность, а также устойчивость организма к перегреванию, охлаждению, недостатку кислорода.

Уже через 7—8 суток неподвижного лежания у людей наблюдаются функциональные расстройства; появляются апатия, забывчивость, невозможность сосредоточиться на серьезных занятиях, расстраивается сон; резко падает мышечная сила, нарушается координация не только в сложных, но и в простых движениях; ухудшается сократимость скелетных мышц, изменяются физико-химические свойства мышечных белков; в костной ткани уменьшается содержание кальция.

У юных спортсменов эти расстройства развиваются медленнее, но и у них в результате гиподинамии нарушается координация движений, появляются вегетативные дисфункции. Особенно пагубна гиподинамия для детей. При недостаточной двигательной активности дети не только отстают в развитии от своих сверстников, но и чаще болеют, имеют нарушения осанки и опорно-двигательной функции.

Последние полмиллиона лет человек эволюционирует филетически, т. е. без изменений в своей генетической программе. Между тем условия, в которых жили наши далекие предки, и условия, в которых живем мы, отличаются, прежде всего, требованиями к объему выполняемых движений. То, что было необходимо древним людям, стало ненужным современному человеку. Мы затрачиваем несравненно меньше физических сил, чтобы обеспечить собственное существование. Но закрепленная тысячелетиями в геноме человека норма двигательной активности не стала для него анахронизмом, ибо не просто при неизменном геноме освободиться от обусловленных им программ жизнедеятельности.

Действительно, нормальное функционирование сердечнососудистой, дыхательной, гормональной и других систем организма тысячелетиями развертывалось в условиях активной двигательной деятельности, и вдруг на последнем 100-50-летнем отрезке эволюции условия жизни предлагают организму совершенно необычную при недостатке движений форму реализации сложившихся способов жизнедеятельности его органов и систем. Природа человека не прощает этого: появляются болезни гипокинезии. Их развитие связано с глубокими функциональными и структурными изменениями на уровне воспроизводства клеточных структур в цепи ДНК – РНК – белок.

 

Гипокинезия на клеточном уровне

 

Какими механизмами порождаются видимые невооруженным глазом расстройства физиологических функций при гипокинезии? Ответ на этот вопрос получен при исследовании внутриклеточных механизмов роста и развития организма.

Многочисленные экспериментальные факты свидетельствуют о том, что гипокинезия для теплокровных животных и человека является стрессорным агентом. Аварийная стресорная фаза экспериментальной гипокинезии продолжается с первых по пятые сутки. Для нее характерно резкое повышение продукции катехоламинов и глюкокортикоидов, преобладание катаболических процессов. Вес животных падает. Наиболее интенсивному разрушительному влиянию на этой стадии подвергается тимус вследствие миграции лимфоцитов, составляющих около 90% его клеточных популяций. Повышенная чувствительность лимфоцитов к стресс-гормонам может рассматриваться как главная причина их миграции и падения массы тимуса.

В последующие 10 суток разрушительному воздействию подвергаются селезенка и печень. Практически неизменными остаются полушария большого мозга. С 30-х по 60-е сутки гипокинезии вес животных стабилизируется, но, как показали исследования, останавливается нормальный физиологический рост. Содержание нуклеиновых кислот в клетках коррелирует с процессами роста животных и его остановкой при гипокинезии.

Менее всего подвержен влиянию гипокинезии головной мозг. В первые 10 дней гипокинезии в нем отмечается увеличение ДНК при сохранении исходного уровня РНК. Концентрация и общее содержание РНК в сердце снижается, что приводит к нарушению биосинтеза белка в миокарде. Отношение РНК/ДНК падает, следовательно, уменьшается и скорость транскрипции (считывания программы биосинтеза) с генетических матриц ДНК. В первые 20 суток гипокинезии падает и абсолютное содержание ДНК, начинаются деструктивные процессы в сердце.

С 20-х по 30-е сутки содержание ДНК в сердце растет. Этот рост связан с ее увеличением в эндотелии и фибробластах сердца (60 % ДНК сердца находится в фибробластах и эндотелиальных клетках, 40% - в мышечных клетках – кардиомиоцитах). Известно, что количество мышечных клеток сердца с 20-х суток постнатального онтогенеза не увеличивается.

С 30-х по 60-е сутки прироста содержания ДНК в сердце не происходит. Снижается плоидность кардиомиоцитов. В нормальных условиях жизнедеятельности число кардиомиоцитов, имеющих более двух ядер, увеличивается. Следовательно, активность генетического аппарата клетки находится в тесной связи с интенсивностью ее функционирования, а гипокинезия выступает как фактор торможения биосинтеза. Особенно демонстративны эти изменения в скелетных мышцах: если при нормальном содержании животных количество РНК за 2 месяца увеличивается на 60 %, то при двухмесячной гипокинезии становится ниже нормы.

Концентрация нуклеиновых кислот в печени при гипокинезии остается на уровне нормы, но снижается их абсолютное (т. е. на массу всего органа) содержание. В печеночной ткани наблюдаются дистрофические изменения, падает количество полиплоидных и делящихся клеток, т. е. клеток с увеличивающимся количеством ДНК, угнетается синтез матричной и рибосомальной РНК. Снижение общего количества ДНК – результат гибели части клеток печени.

В тимусе и селезенке начиная с первых дней гипокинезии и до 20-х суток падает и концентрация, и общее содержание нуклеиновых кислот.

Содержание и скорость биосинтеза белковых структур клетки тесно связаны с изменениями количества ДНК и РНК. В первые 20 дней гипокинезии отмечается преобладание ката-болических процессов в клетках и тканях экспериментальных животных. Вследствие деструктивных изменений в клетках тимуса и печени, скелетных мышц, концентрация катепсина Д, фермента распадающихся тканевых белков, уже к третьим суткам гипокинезии превышает уровень контроля в два раза.

С 20-х по 30-е сутки гипокинезии наблюдается стабилизация белкового состава внутренних органов. В клетках печени и кардиомиоцитах количество белка начинает расти, но в последующие дни – от 30-го до 60-го — уровень его остается стабильным.

Возвращение в условия нормальной жизнедеятельности после гипокинезии приводит к активизации биосинтеза нуклеиновых кислот и белка. В тимусе уже к десятым суткам восстановительного периода их содержание достигает уровня контрольных животных. В скорости восстановительных процессов проявляется одна из закономерностей биологического развития: низкодифференцированные структуры восстанавливаются быстрее, чем высокодифференцированные. К концу 30-го дня восстановительного периода подопытные животные практически не отличались от контрольных. Этот факт убедительно свидетельствует о том, что гипокинезия не вызывает необратимых изменений в генетическом аппарате клетки.

 

Потребление кислорода как биохимический критерий гиподинамии

 

Жизненный комфорт современного человека вызвал резкое ограничение ежедневной двигательной активности, что приводит к отрицательным изменениям в деятельности различных систем организма. Особенно большие изменения в условиях дефицита движений происходят в сердечно-сосудистой и дыхательной системах.

Определив уровень потребления кислорода, можно оценить функциональные возможности кардиореспираторной системы современных школьников.

Гиподинамия отрицательно влияет как на взрослых, так и на детей и подростков. Систематическое обследование детей школьного возраста позволило у трети из них обнаружить патологию сердечно-сосудистой системы. Это указывает на необходимость принятия срочных мер, направленных на усиление двигательной активности растущего организма.

Сегодня, изучив предельные возможности систем дыхания и кровообращения у человека, можно определить максимальное потребление кислорода (МПК). По мнению Всемирной организации здравоохранения, МПК — один из наиболее информативных показателей функционального состояния кардиореспираторной системы. А так как системы кровообращения и дыхания – ведущие в процессах аэробного энергообеспечения, то по их показателям судят также о физической работоспособности организма в целом.

Обычно МПК определяют в лабораторных условиях. Каждый испытуемый в течение 6-8 мин на велоэргометре выполняет предельную трехступенчатую работу нарастающей мощности. На последней минуте, когда частота сердечных сокращений (ЧСС) достигает 180-200 уд/мин, выдыхаемый воздух забирают в так называемые мешки Дугласа, анализируют его и после определения минутного объема дыхания рассчитывают максимальное потребление кислорода. Полученную величину делят на массу тела (кг) – это и есть показатель максимального потребления кислорода (МПК/кг), который объективно отражает работоспособность человека.

На основании экспериментального материала, опубликованного в специальной литературе, можно оценить работоспособность школьников обоего пола, исходя из относительных величин МПК.

Изучив функциональные возможности кардиорееппраторной системы, мы получили доказательства, что у современных школьников постепенно снижаются относительные величины МПК, а, следовательно, ухудшается физическая работоспособности. Оказалось, что функциональные возможности кардиореспираторной системы современных школьников ниже, чем их сверстников и 1950-1970-х годах. Особенно заметны сдвиги у девочек, у которых отмечено снижение с возрастом исследуемого показателя. В возрасте 9-10 лет физическая работоспособность школьниц оценивалась как удовлетворительная (37, 8 мл/кг), а в 15-16 лет – неудовлетворительная (29, 9 мл/кг). Ухудшение функциональных возможностей систем кровообращения и дыхания сопровождалось постепенным увеличением с возрастом жировой ткани (в организме девочек в возрасте 9-10 лет содержание жира составляло свыше 24% от всей массы тела, в 13-14 – свыше 25%, а в 15-16 лет – около 29%).

Снижение функциональных возможностей кардиореспираторной системы современных школьников в основном связано с гиподинамией. Обнаружено, что с возрастом двигательная активность (ДА) имеет тенденцию к снижению, особенно четко выраженную у девушек. Отмечено, что среди детей всех возрастов есть подвижные дети, с высоким уровнем ДА, выполняющие в день 18 тыс. шагов, и малоподвижные, с низким уровнем двигательной активности, совершающие менее 11 тыс. шагов.

В результате определения МПК/кг у детей с разным уровнем ДА выявлено четкое изменение этого показателя в зависимости от физической активности детей. Школьники, выполняющие от 12 до 18 тыс. шагов в день, имели достоверно большие величины МПК/кг, чем их малоподвижные ровесники. Эта разница в активности свидетельствует о том, что выполнение в день менее 12 тыс. шагов приводит к развитию гиподинамии. Об этом говорят результаты обследования школьников обычной и школы полного дня, которая отличалась не только организацией учебного процесса, но и двигательным режимом дня. В школе полного дня между уроками практиковалась так называемая «динамическая пауза» и во второй половине дня – спортивный час. Во всех возрастных группах обеих школ с 9 до 16 лет отмечены достоверные различия в относительных показателях МПК/кг.

Методом непрямой калориметрии мы оцепили энергетическую стоимость 11 тыс. шагов. Оказалось, что мальчики 7-9 лет на 1 тыс. шагов тратили 21 ккал, а 14-16 лет – 42 ккал; девочки 7 лет-9 19 ккал, а 14-16 лет – 35 ккал. Повышение с возрастом энергозатрат связано не только с тем, что у школьников старших классов шаг становится шире и размашистее, по и г тем, что большая энергостоимость связана с неодинаковым процентным содержанием скелетных мышц в организме детей и подростков. У ребенка в возрасте 10 лет из всей массы тела на скелетные мышцы приходится 20%, а у 14-летних – 26%.

Исходя из приведенных данных, нетрудно рассчитать, сколько энергии тратят школьники различного возраста и пола на 11 тыс. шагов. Если учесть, что мальчики в возрасте 10-16 лет расходуют в сутки 2200-2900 ккал, а девочки 2000-2700 ккал и что 25-30% этих энергозатрат должно приходиться на двигательную активность, то становится очевидным дефицит движении, который создается при выполнении 10-11 тыс. шагов, приводящий к значительному снижению аэробных возможностей организма. Следовательно, ДА и максимальное потребление кислорода находятся в прямой зависимости: чем выше число локомоций (ходьба), тем лучше функциональное состояние кардиореспираторпой системы.

 

Роль физической активности в сохранении здоровья

 

Движение было необходимым условием для выживания организмов на протяжении длительной эволюции, приведшей к становлению человека. Добывание пищи, поиски условий комфорта, уход от опасности требовал большой мышечной активности. Она достигалась не только усиленной работой нервных центров, но и гуморальной регуляцией. Любое напряжение сопровождалось выделением большого количества адреналина, норадреналина и других гормонов, которые обеспечивали напряженную работу сердца, легких, печени и других органов, позволявших снабжать мышцы глюкозой, кислородом и другими необходимыми веществами, а также освобождать организм от шлаков.

Сейчас, когда у людей сидячих профессий и учащихся мышечная работа уменьшилась, нервные напряжения остались и даже усилились. При нервных нагрузках по-прежнему выделяются в кровь гормоны, но они не разрушаются так быстро, как при усиленной мышечной работе. Избыток гормонов действует на нервную систему человека, лишает его сна, поддерживает его беспокойное состояние. Человек в своих мыслях все время возвращается к тревожным ситуациям, как бы проигрывает их в своем сознании, а это уже подходящая почва для неврозов и даже для телесных заболеваний: гипертонии, язвы желудка и пр. Спокойная мышечная работа, особенно после нервных перегрузок, позволяет разрядить напряжение, так как при этом разрушаются гормоны, они перестают влиять на нервные центры, а усталость способствует быстрому наступлению сна. Вот почему физическая активность во многих случаях позволяет нам улучшить свое настроение, вернуть утраченное спокойствие.

Но дело не только в этом. В нашем организме непрерывно идут процессы обмена веществ. Часть всосавшихся в кишечнике веществ идет на построение элементов клеток и тканей, на синтез ферментов. Другая часть распадается и окисляется с освобождением энергии. Эти процессы тесно связаны между собой. Чем сильнее идут процессы распада и окисления, тем интенсивнее идут процессы создания новых веществ. Если же обнаруживается несоответствие между поступлением питательных веществ и энерготратами, то избыток всосавшихся веществ идет на образование жира. Он откладывается не только под кожей, но и в соединительной ткани, которая нередко замещает специализированные ткани: мышечную, печеночную и др.

Совершенно иначе обмен веществ идет при достаточной мышечной активности. Длительный и интенсивный труд обычно ведет к некоторым изменениям в клетках и тканях, даже к частичному их разрушению. Однако освободившейся в ходе распада и окисления органических веществ энергии достаточно не только для восстановления разрушенных частей, но и для синтеза новых элементов. В результате приобретается много больше, чем было потеряно. Но всему есть свой предел. Если работа слишком интенсивная, а отдых после нее недостаточен, то восстановления разрушенного и синтеза нового не будет.

Следовательно, тренировочный эффект будет проявляться не всегда. Слишком малая нагрузка не вызовет такого распада веществ, который смог бы стимулировать синтез новых, а слишком напряженная работа может привести к преобладанию распада над синтезом и к дальнейшему истощению организма. Тренировочный эффект дает лишь та нагрузка, при которой синтез белков обгоняет их распад. Вот почему для успешной тренировки важно рассчитывать затрачиваемые усилия. Они должны быть достаточными, но не чрезмерными. Только при этих условиях растет функциональная мощность органа и организма в целом. Другое важное правило состоит в том, что после работы необходим обязательный отдых, позволяющий восстановить утраченное и приобрести новое.

Сейчас медицине известны вещества, которые могут резко поднимать на короткое время нервную и мышечную силу, а также препараты, стимулирующие синтез мышечных белков после действия нагрузок. Первая группа препаратов получила название допингов (от англ. dope — давать наркотик). В спорте применение этих веществ категорически запрещено не только потому, что спортсмен, принявший допинг, имеет преимущество перед тем спортсменом, который его не принимал, и его результаты могут оказаться лучшими не за счет совершенства техники, мастерства, труда, а за счет приема препарата, но и потому, что допинги очень вредно действуют на организм. За временным повышением работоспособности может последовать полная инвалидность. (Впервые допинг стали давать лошадям, участвующим в скачках. Они действительно показывали большую резвость, но после скачек никогда не восстанавливали свою прежнюю форму, чаще, всего их пристреливали. Дельцам важен был выигрыш в тотализатор, нередко более крупный, чем стоимость самой лошади).






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.