Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод Рёмера. 2 страница






Вопрос 54 Иммуноглобулины, структура и функци

Основными формами иммунного ответа на попадание антигена в организм являются: биосинтез антител, образование клеток иммунной памяти, реакция гиперчувствительности немедленного типа, реакция гиперчувствительности замедленного типа, иммунологическая толерантность, идиотип- антиидиотипические отношения.

Для гуморального иммунитета характерна выработка специфических антител (иммуноглобулинов).

Антитела - специфические белки гамма- глобулиновой природы, образующиеся в организме в ответ на антигенную стимуляцию и способные специфически взаимодействовать с антигеном (in vivo, in vitro). В соответствии с международной классификацией совокупность сывороточных белков, обладающих свойствами антител, называют иммуноглобулинами.

Уникальность антител заключается в том, что они способны специфически взаимодействовать только с тем антигеном, который вызвал их образование.

Иммуноглобулины (Ig) разделены в зависимости от локализации на три группы:

- сывороточные (в крови);

- секреторные (в секретах- содержимом желудочно- кишечного тракта, слезном секрете, слюне, особенно- в грудном молоке) обеспечивают местный иммунитет (иммунитет слизистых);

- поверхностные (на поверхности иммунокомпетентных клеток, особенно В- лимфоцитов).

Любая молекула антител имеет сходное строение (Y- образную форму) и состоит из двух тяжелых (Н) и двух легких (L) цепей, связанных дисульфидными мостиками. Каждая молекула антител имеет два одинаковых антигенсвязывающих фрагмента Fab (fragment antigen binding), определяющих антительную специфичность, и один Fc (fragment constant) фрагмент, который не связывает антиген, но обладает эффекторными биологическими функциями. Он взаимодействует со “своим” рецептором в мембране различных типов клеток (макрофаг, тучная клетка, нейтрофил).

Концевые участки легких и тяжелых цепей молекулы иммуноглобулина вариабельны по составу (аминокислотным последовательностям) и обозначаются как VL и VH области. В их составе выделяют гипервариабельные участки, которые определяют структуру активного центра антител (антигенсвязывающий центр или паратоп). Именно с ним взаимодействует антигенная детерминанта (эпитоп) антигена. Антигенсвязывающий центр антител комплементарен эпитопу антигена по принципу “ключ - замок” и образован гипервариабельными областями L- и Н- цепей. Антитело свяжется антигеном (ключ попадет в замок) только в том случае, если детерминантная группа антигена полностью вместится в щель активного центра антител.

Легкие и тяжелые цепи состоят из отдельных блоков- доменов. В легких (L) цепях - два домена- один вариабельный (V) и один константный (C), в тяжелых (H) цепях- один V и 3 или 4 (в зависимости от класса иммуноглобулина) C домена.

Существуют легкие цепи двух типов- каппа и лямбда, они встречаются в различных пропорциях в составе различных (всех) классов иммуноглобулинов.

Выявлено пять классов тяжелых цепей- альфа (с двумя подклассами), гамма (с четырьмя подклассами), эксилон, мю и дельта. Соответственно обозначению тяжелой цепи обозначается и класс молекул иммуноглобулинов- А, G, E, M и D.

Именно константные области тяжелых цепей, различаясь по аминокислотному составу у различных классов иммуноглобулинов, в конечном результате и определяют специфические свойства иммуноглобулинов каждого класса.

Известно пять классов иммуноглобулинов, отличающихся по строению тяжелых цепей, молекулярной массе, физико- химическим и биологическим характеристикам: IgG, IgM, IgA, IgE, IgD. В составе IgG выделяют 4 подкласса (IgG1, IgG2, IgG3, IgG4), в составе IgA- два подкласса (IgA1, IgA2).

Структурной единицей антител является мономер, состоящий из двух легких и двух тяжелых цепей. Мономерами являются IgG, IgA (сывороточный), IgD и IgE. IgM- пентамер (полимерный Ig). У полимерных иммуноглобулинов имеется дополнительная j (joint) полипептидная цепь, которая объединяет (полимеризует) отдельные субъединицы (в составе пентамера IgM, ди- и тримера секреторного IgA).

Основные биологические характеристики антител.

1. Специфичность - способность взаимодействия с определенным (своим) антигеном (соответствие эпитопа антигена и активного центра антител).

2. Валентность- количество способных реагировать с антигеном активных центров (это связано с молекулярной организацией- моно- или полимер). Иммуноглобулины могут быть двухвалентными (IgG) или поливалентными (пентамер IgM имеет 10 активных центров). Двух- и более валентные антитела навывают полными антителами. Неполные антитела имеют только один участвующий во взаимодействии с антигеном активный центр (блокирующий эффект на иммунологические реакции, например, на агглютинационные тесты). Их выявляют в антиглобулиновой пробе Кумбса, реакции угнетения связывания комплемента.

3. Афинность - прочность связи между эпитопом антигена и активным центром антител, зависит от их пространственного соответствия.

4. Авидность - интегральная характеристика силы связи между антигеном и антителами, с учетом взаимодействия всех активных центров антител с эпитопами. Поскольку антигены часто поливалентны, связь между отдельными молекулами антигена осуществляется с помощью нескольких антител.

5. Гетерогенность - обусловлена антигенными свойствами антител, наличием у них трех видов антигенных детерминант:

- изотипические - принадлежность антител к определенному классу иммуноглобулинов;

- аллотипические- обусловлены аллельными различиями иммуноглобулинов, кодируемых соответствующими аллелями Ig гена;

- идиотипические- отражают индивидуальные особенности иммуноглобулина, определяемые характеристиками активных центров молекул антител. Даже тогда, когда антитела к конкретному антигену относятся к одному классу, субклассу и даже аллотипу, они характеризуются специфическими отличиями друг от друга (идиотипом). Это зависит от особенностей строения V- участков H- и L- цепей, множества различных вариантов их аминокислотных последовательностей.

Понятие о поликлональных и моноклональных антителах будет дано в следующих разделах.

Характеристика основных классов иммуноглобулинов.

Ig G. Мономеры, включают четыре субкласса. Концентрация в крови- от 8 до 17 г/л, период полураспада- около 3- 4 недель. Это основной класс иммуноглобулинов, защищающих организм от бактерий, токсинов и вирусов. В наибольшем количестве IgG- антитела вырабатываются на стадии выздоровления после инфекционного заболевания (поздние или 7S антитела), при вторичном иммунном ответе. IgG1 и IgG4 специфически (через Fab- фрагменты) связывают возбудителей (опсонизация), благодаря Fc- фрагментам IgG взаимодействуют с Fc- рецепторам фагоцитов, способствуя фагоцитозу и лизису микроорганизмов. IgG способны нейтрализовать бактериальные экзотоксины, связывать комплемент. Только IgG способны транспортироваться через плаценту от матери к плоду (проходить через плацентарный барьер) и обеспечивать защиту материнскими антителами плода и новорожденного. В отличие от IgM- антител, IgG- антитела относятся к категории поздних- появляются позже и более длительно выявляются в крови.

IgM. Молекула этого иммуноглобулина представляет собой полимерный Ig из пяти субъединиц, соединенных дисульфидными связями и дополнительной J- цепью, имеет 10 антиген- связывающих центров. Филогенетически это наиболее древний иммуноглобулин. IgM- наиболее ранний класс антител, образующихся при первичном попадании антигена в организм. Наличие IgM- антител к соответствующему возбудителю свидетельствует о свежем инфицировании (текущем инфекционном процессе). Антитела к антигенам грамотрицательных бактерий, жгутиковым антигенам- преимущественно IgM- антитела. IgM- основной класс иммуноглобулинов, синтезируемых у новорожденных и младенцев. IgM у новорожденных- это показатель внутриутробного заражения (краснуха, ЦМВ, токсоплазмоз и другие внутриутробные инфекции), поскольку материнские IgM через плаценту не проходят. Концентрация IgM в крови ниже, чем IgG- 0, 5- 2, 0 г/л, период полураспада- около недели. IgM способны агглютинировать бактерии, нейтрализовать вирусы, активировать комплемент, активизировать фагоцитоз, связывать эндотоксины грамотрицательных бактерий. IgM обладают большей, чем IgG авидностью (10 активных центров), аффинность (сродство к антигену) меньше, чем у IgG.

IgA. Выделяют сывороточные IgA (мономер) и секреторные IgA (IgAs). Сывороточные IgA составляют 1, 4- 4, 2 г/л. Секреторные IgAs находятся в слюне, пищеварительных соках, секрете слизистой носа, в молозиве. Они являются первой линией защиты слизистых, обеспечивая их местный иммунитет. IgAs состоят из Ig мономера, J-цепи и гликопротеина (секреторного компонента). Выделяют два изотипа- IgA1 преобладает в сыворотке, субкласс IgA2 - в экстраваскулярных секретах.

Секреторный компонент вырабатывается эпителиальными клетками слизистых оболочек и присоединяется к молекуле IgA в момент прохождения последней через эпителиальные клетки. Секреторный компонент повышает устойчивость молекул IgAs к действию протеолитических ферментов. Основная роль IgA- обеспечение местного иммунитета слизистых. Они препятствуют прикреплению бактерий к слизистым, обеспечивают транспорт полимерных иммунных комплексов с IgA, нейтрализуют энтеротоксин, активируют фагоцитоз и систему комплемента.

IgE. Представляет мономер, в сыворотке крови находится в низких концентрациях. Основная роль- своими Fc- фрагментами прикрепляется к тучным клеткам (мастоцитам) и базофилам и опосредует реакции гиперчувствительности немедленного типа. К IgE относятся “антитела аллергии”- реагины. Уровень IgE повышается при аллергических состояниях, гельминтозах. Антигенсвязывающие Fab- фрагменты молекулы IgE специфически взаимодействует с антигеном (аллергеном), сформировавшийся иммунный комплекс взаимодействует с рецепторами Fc- фрагментов IgE, встроенных в клеточную мембрану базофила или тучной клетки. Это является сигналом для выделения гистамина, других биологически активных веществ и развертывания острой аллергической реакции.

IgD. Мономеры IgD обнаруживают на поверхности развивающихся В- лимфоцитов, в сыворотке находятся в крайне низких концентрациях. Их биологическая роль точно не установлена. Полагают, что IgD участвуют в дифференциации В-клеток, способствуют развитию антиидиотипического ответа, участвуют в аутоиммунных процессах.

Вопрос 55

ИФА

Набор реагентов для выявление АГ. Реакцию проводят в микропланшетах.

1. На дно лунки помещается АТ против выевляемого АГ

2. Так же как и для прямого иммуноферментного анализа производится забор биологического материала – кровь, соскобы, мазки. Исследуемый биологический материал вносят в лунки и оставляют на 15-30 минут для приклеивания антигенов к поверхности лунок.

3. После чего удаляют «лишние», не связавшиеся антитела, путем выливания содержимого лунок. Производят промывку специальным раствором для полного удаления всех не связавшихся антител.

4. После отмытия вводят АТ меченные ферментом, обр «сэндвич» АТ –АГ – АТ

5. Вводят хромогенный субстракт который при расщеплении ферментом становится + коричневый

Применяется для выявление гепатита В, ВИЧ, герпес

 

Иммуноблоттиг

Иммуноблоттинг — высокочувстви­тельный метод выявления белков, основанный на сочетании электрофореза и ИФА или РИА.

Полоски и нитроцеллюлозы с 15 АГ возбудителя ВИЧ

Этапы.

1) На опытную бумажку с разделенными АГ наносим сыворотку больного

2) Отмываем

3) Вводим в пробирку с антиглобулярными антителами мечеными ферментом

4) Вводим полоску в хромогенный субстракт

Появление 4 зон - доказательство ВИЧ

Вопрос 56 Интерфероны, их характеристика. Способы получения и применени

Интерфероны - общее название, под которым в настоящее время объединяют ряд белков со сходными свойствами, выделяемых клетками организма в ответ на вторжение вируса. Благодаря интерферонам клетки становятся невосприимчивыми по отношению к вирусу. «Определяемый в качестве интерферона фактор должен быть белковой природы, обладать антивирусной активностью по отношению к разным вирусам, по крайней мере, в гомологичных клетках, опосредованной клеточными метаболическими процессами, включающими синтез РНК и белка»

Эффекты интерферона (таблица 1)

1. Обладает антивирусным действием. Самостоятельно интерферон не уничтожает вирусы. После проникновения в клетку вируса начинает синтезироваться интерферон, который выходит за пределы клетки и прикрепляется к поверхности гликозидных рецепторов клеток, пораженных вирусами или клеток, в которых вирус еще не проник. Гликозидные рецепторы способен передавать внутрь клеток сигналы, запускающие механизм синтеза ферментов - эндонуклеазы и протеиназы. Эндонуклиаза способна «разрезать» молекулы нуклеиновых кислот вирусов на уровне трансляции

. Интерферон вызывает ингибирование клеточного роста (используется как противоопухолевое средство) - способен подавлять деление онкогенных клеток при сохранении функции активации всех звеньев иммунной системы.

. Интерферон оказывает стимулирующее влияние на фагоцитоз, естественные клетки - киллеры и макрофаги; повышает неспецифическую резастентность клеток; а общая иммунологическая реактивность организма адекватна уровню интерферонообразования.

. Интерферон обладает антимикробной активностью

. Оказывает радиозащитное действие

. Интерерон является иммуномодулятором - т. е. регулирует иммунологические реакции, стимулирует иммунную систему организма.

3 вида интерферонов – альфа бета и гамма.

Альфа-интерферонвырабатывается лейкоцитами, и он получил название лейкоцитар­ного; бета-интерферон называют фибробластным, поскольку он синтезируется фибробластами — клетками соединительной ткани, а гамма-интерферон — иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками.
Интерферон синтезируется в организме постоянно, и его концентрация в крови де­ржится на уровне примерно 2 МЕ/мл (1 меж­дународная единица — ME — это количество интерферона, защищающее культуру клеток от 1 ЦПД50 вируса). Выработка интерферона резко возрастает при инфицировании виру­сами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов.

Применение интерферона. Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или пос­тупать в организм извне. Поэтому его использу­ют с профилактической целью при многих ви­русных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепати­ты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и забо­леваний, связанных с иммунодефицитами.
Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффек­тивен для животных и наоборот. Однако эта видоспецифичность относительна.
Получение интерферона. Получают интерферон двумя способами: а) путем инфи­цирования лейкоцитов или лимфоцитов кро­ви человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конс­труируют из него препараты интерферона; б) генно-инженерным способом — путем выра­щивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, получен­ный генно-инженерным способом, носит на­звание рекомбинантного. В нашей стране рекомбинантный интерферон получил офици­альное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного.
Рекомбинантный интерферон нашел ши­рокое применение в медицине как профилак­тическое и лечебное средство при вирусных инфекциях, новообразованиях и при иммунодефицитах.

Вопрос 57 Комплемент, его структура,

функции, пути активации, роль в иммунитете

 

Комплемент – большая группа взаимодействующих между собой белков и гликопротеидов сыворотки крови.

-опосредует системы воспаления

-опсонизируют чужеродные материалы для их последующего фагоцитоза

-учавствуют вв уничтожении мо

Факторы системы комплемента: структура

1. 9 белков состовляющих собственно комплемент С1….С9

2. Регуляторные белки

3. Факторы учавствующие в альтернативном пути активации системы комплемента.фактор В-протеинкиназа, фактор Д-гликопротеин, фактор Р (пропердин)

Классический путь активации комплемента.Активируется при наличии в организме антител к данному антигену. Связывать С1 и активировать путь могут только ИгG и M.Присоединение АГ к АТ меняет конформацию АТ и его рецептор на Fc- фрагменте становится доступным для связывания с С1q, Возникает компплекс АТ+АГ+С1. Он взаимодействует с С4, а затем с С2, образуется комплекс АТ АГ С1С4С2.

После присоединение С3, весь комплекс способен прилипать к различным частицам и клеткам.Лизис бактерий наступает после присоединения остальных компонентов С5-С9.Компонент С5 расщепляется на С5a и С5b. Компонент с5а учавствует в формировании воспалительного процесса, а С5b инициирует образование мембранатакующего комплекса. Этот комплекс встраевается в билипидный слой и формирует канал, по которому в клетку проникает вода, клетка набухает и лопается.

С3 расщепляется конвертазой на С3а и С3b. Фагоциты прилипают к клетке в области покрытой с3B и выделяют гидролитические ферменты убивают клетку, если она не подвергается лизису.

 

Альтернативный путь.активации системы когда еще нет антител.т.е при первичном контакте с данным АГ. Альтернативный путь индуцируется ЛПС и другими микробными Аг. В этом случае другая конвертаза расщепляет С3 на компоненты. Не учавствуют компоненты С1 С4 и С2. Пропердин – стабилизирует конвертазу альтернативного пути.

Механизм С1 шунта.

Функции:

1. Лизис чужеродных клеток

2. Опсонизация чуж клеток

3. Стимуляция хемотаксиса

4. Стимуляция фагоцитоза

5. Повышение сосудистой проницаемости

6 стимуляция мастоцитов и выбрасывание БАВ.

Вопрос 58

Иммунная реакция организма может иметь различный характер, но всегда начинается с захвата антигена макрофагами крови и тканей или же со связывания со стромой лимфоидных органов. Нередко антиген адсорбируется также на клетках паренхиматозных органов. В макрофагах он может полностью разрушаться, но чаше подвергается лишь частичной деградации. В частности, большинство антигенов в лизосомах фагоцитов в печение часа подвергается ограниченной денатурации и протеолизу. Оставшиеся от них пептиды (как правило, два-три остатка аминокислот) комплексируются с экспрессированными на внешней мембране макрофагов молекулами МНС.

Макрофаги и все другие вспомогательные клетки, несущие на внешней мембране антигены, называются антигенпрезентирующими, именно благодаря им Т- и В-лимфоциты, выполняя функцию презентации, позволяют быстро распознавать антиген.

Иммунный ответ в виде антителообразования происходит при распознавании В-клетками антигена, который индуцирует их пролиферацию и дифференциацию в плазмоцит. Прямое воздействие на В-клетку без участия Т-клеток могут оказать только тимуснезависимые антигены. В этом случае В-клетки кооперируются с Т-хелперами и макрофагами. Кооперация на тимусза-висимый антиген начинается с его презентации на макрофаге Т-хелперу. В механизме этого распознавания ключевую роль имеют молекулы МНС, так как рецепторы Т-хелперов распознают номинальный антиген как комплекс в целом или же как модифицированные номинальным антигеном молекулы МНС, приобретшие чужеродность. Распознав антиген, Т-хелперы секретируют γ -интерферон, который активирует макрофаги и способствует уничтожению захваченных ими микроорганизмов. Хелперный эффект на В-клетки проявляется пролиферацией и дифференциацией их в плазмоциты. В распознавании антигена при клеточном характере иммунного ответа, кроме Т-хелперов, участвуют также Т-киллеры, которые обнаруживают антиген на тех антигенпрезентирующих клетках, где он комплексируется с молекулами МНС. Более того, Т-киллеры, обусловливающие цитолиз, способны распознавать не только трансформированный, но и нативный антиген. Приобретая способность вызывать цитолиз, Т-киллеры связываются с комплексом антиген + молекулы МНС класса 1 на клетках-мишенях; привлекают к месту соприкосновения с ними цитоплазма-тические гранулы; повреждают мембраны мишеней после экзоцитоза их содержимого.

В результате продуцируемые Т-киллерами лимфотоксины вызывают гибель всех трансформированных клеток организма, причем особенно чувствительны к нему клетки, зараженные вирусом. При этом наряду с лимфотоксином активированные Т-киллеры синтезируют интерферон, который препятствует проникновению вирусов в окружающие клетки и индуцирует в клетках образование рецепторов лимфотоксина, тем самым повышая их чувствительность к литическому действию Т-киллеров.

Кооперируясь в распознавании и элиминации антигенов, Т-хелперы и Т-киллеры не только активируют друг друга и своих предшественников, но и макрофагов. Те же, в свою очередь, стимулируют активность различных субпопуляций лимфоцитов.

Регуляция клеточного иммунного ответа, как и гуморального, осуществляется Т-супрессорами, которые воздействуют на пролиферацию цитотоксических и антигенпрезентирующих клеток.

Цитокины. Все процессы кооперативных взаимодействий им-мунокомпетентных клеток, независимо от характера иммунного ответа, обусловливаются особыми веществами с медиаторными свойствами, которые секретируются Т-хелперами, Т-киллерами, мононуклеарными фагоцитами и некоторыми другими клетками, участвующими в реализации клеточного иммунитета. Все их многообразие принято называть цитокинами. По структуре цитокины являются протеинами, а по эффекту действия — медиаторами. Вырабатываются они при иммунных реакциях и обладают потенциирующим и аддитивным действием; быстро синтезируясь, цитокины расходуются в короткие сроки. При угасании иммунной реакции синтез цитокинов прекращается

Схема кооперативного взаимодействия

1. Патоген поглощается макрофагом

2. Макрофаг осуществляет процессинг Аг

3. Макрофаг с помощью белка МНС класса II представляет АГ т –хелперам

4. Т-хелпер узнает АГ с помощью собственного белка МНС класса II и активируется

5. АГ распознается и В- лимфоцитом, который также несет процессированный АГ и активируется

6. Активированный В-лимфоцит размножается и дифференцируется в антителобразующие клетки и клетки памяти

7. АТ связываются с АГ

Вопрос 59

Лимфоциты (от лимфа и греч. κ ύ τ ο ς — «вместилище», здесь — «клетка») — клетки иммунной системы, представляющие собой разновидность лейкоцитов группы агранулоцитов. Лимфоциты — главные клетки иммунной системы, обеспечивают гуморальный иммунитет (выработка антител), клеточный иммунитет (контактное взаимодействие с клетками-жертвами), а также регулируют деятельность клеток других типов

-популяции В лимфоцитов

-популяции Т лимфоцитов

-NK клетки, обладают естественными цитотоксическими свойствами

 

Т-хелперы нулевые могут диф в Тх1го или Тх 2 го типа

Тхелперы 1го типа стимулируют клеточный иммунитет, но подавляют гуморальный

Тхелперы 2го типа стимулируют гуморальный

Т-киллеры

Т-супрессоры (подавляют функцию хелперов

Т-клетки памяти. популяция Т-лимфоцитов, хранящих информацию о ранее действовавших антигенах и формирующих вторичный иммунный ответ, осуществляющийся в более короткие сроки, чем первичный иммунный ответ, так как минует основные стадии этого процесса.

Вопрос 60

Моноклональные антитела. Каждый В-лимфоцит и его потомки, образовавшиеся в ре­зультате пролиферации (т.е. клон), способны синтезировать антитела с паратопом строго определенной специфичности. Такие антитела получили название моноклональных. В природ­ных условиях макроорганизма получить моно­клональные антитела практически невозмож­но. Дело в том, что на одну и ту же антигенную детерминанту одновременно реагируют до 100 различных клонов В-лимфоцитов, незначи­тельно различающихся антигенной специфич­ностью рецепторов и, естественно, аффиннос­тью. Поэтому в результате иммунизации даже монодетерминантным антигеном мы всегда получаем поликлональные антитела.
Принципиально получение моноклональных антител выполнимо, если провести пред­варительную селекцию антителопродуцирующих клеток и их клонирование (т.е. выделение отдельных клонов в чистые культуры). Однако задача осложняется тем, что В-лимфоциты, как и другие эукариотические клетки, имеют ограниченную продолжительность жизни и число возможных митотических делений.
Проблема получения моноклональных ан­тител была успешно решена Д. Келлером и Ц. Милыптейном. Авторы получили гибридные клетки путем слияния иммун­ных В-лимфоцитов с миеломной (опухоле­вой) клеткой. Полученные гибриды обладали специфическими свойствами антителопродуцента и «бессмертием» раковотрансформированной клетки. Такой вид клеток полу­чил название гибридом. Гибридома хорошо размножается в искусственных питательных средах и в организме животных и в неогра­ниченном количестве вырабатывает антите­ла. В результате дальнейшей селекции были отобраны отдельные клоны гибридных кле­ток, обладавшие наивысшей продуктивнос­тью и наибольшей аффинностью специфи­ческих антител.
Гибридомы, продуцирующие моноклональные антитела, размножают или в аппаратах, приспособленных для выращивания культур клеток или же вводя их внутрибрюшинно особой линии (асцитным) мышам. В послед­нем случае моноклональные антитела накап­ливаются в асцитной жидкости, в которой размножаются гибридомы. Полученные как тем, так и другим способом моноклональные антитела подвергают очистке, стандартиза­ции и используют для создания на их основе диагностических препаратов.
Гибридомные моноклональные антитела нашли широкое применение при создании диагностических и лечебных иммунобиоло­гических препаратов.

Вопрос 61

неспецифические факторы защиты организма

Механические факторы. Кожа и слизистые оболочки ме­ханически препятствуют проникновению микроорганизмов и других антигенов в организм. Последние все же могут попадать в организм при заболеваниях и повреждениях кожи (травмы, ожоги, воспалительные заболевания, укусы насекомых, живот­ных и т. д.), а в некоторых случаях и через нормальную кожу и слизистую оболочку, проникая между клетками или через клет­ки эпителия (например, вирусы). Механическую защиту осуще­ствляет также реснитчатый эпителий верхних дыхательных пу­тей, так как движение ресничек постоянно удаляет слизь вмес­те с попавшими в дыхательные пути инородными частицами и микроорганизмами.

Физико-химические факторы. Антимикробными свой­ствами обладают уксусная, молочная, муравьиная и другие кис­лоты, выделяемые потовыми и сальными железами кожи; соля­ная кислота желудочного сока, а также протеолитические и другие ферменты, имеющиеся в жидкостях и тканях организма. Особая роль в антимикробном действии принадлежит ферменту лизоциму. Этот протеолитический фермент получил название «мурамидаза», так как разрушает клеточную стенку бактерий и других клеток, вызывая их гибель и способствуя фагоцитозу. Лизоцим вырабатывают макрофаги и нейтрофилы. Содержится он в больших количествах во всех секретах, жидко­стях и тканях организма (кровь, слюна, слезы, молоко, кишеч­ная слизь, мозг и т. д.). Снижение уровня фермента приводит к возникновению инфекционных и других воспалительных заболе­ваний. В настоящее время осуществлен химический синтез лизоцима, и он используется как медицинский препарат для лече­ния воспалительных заболеваний.

Иммунобиологические факторы. В процессе эволюции сформировался комплекс гуморальных и клеточных факторов не­специфической резистентности, направленных на устранение чу­жеродных веществ и частиц, попавших в организм.

Гуморальные факторы неспецифической резистентности со­стоят из разнообразных белков, содержащихся в крови и жид­костях организма. К ним относятся белки системы комплемен­та, интерферон, трансферрин, β -лизины, белок пропердин, фибронектин и др.

Белки системы комплемента обычно неактивны, но приоб­ретают активность в результате последовательной активации и взаимодействия компонентов комплемента. Интерферон оказы­вает иммуномодулирующий, пролиферативный эффект и вызы­вает в клетке, инфицированной вирусом, состояние противови­русной резистентности. β -Лизины вырабатываются тромбоцита­ми и обладают бактерицидным действием. Трансферрин конку­рирует с микроорганизмами за необходимые для них метаболи­ты, без которых возбудители не могут размножаться. Белок про-пердин участвует в активации комплемента и других реакциях. Сывороточные ингибиторы крови, например р-ингибиторы (р-липопротеины), инактивируют многие вирусы в результате не­специфической блокады их поверхности.

Отдельные гуморальные факторы (некоторые компоненты ком­племента, фибронектин и др.) вместе с антителами взаимодей­ствуют с поверхностью микроорганизмов, способствуя их фаго­цитозу, играя роль опсонинов.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.