Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Заряд электрона

Заряд электрона (е) — минимальный, механически неделимый, отрицательный заряд, существующий в природе.

e=1, 6× 10-19

СИ: Кл

Тело является электрически нейтральным, если суммарный заряд отрицательно заряженных частиц, входящих в состав тела, равен суммарному заряду положительно заряженных частиц.

Стабильными носителями электрических зарядов являются элементарные частицы и античастицы.

Носители положительного заряда — протон и позитрон, а отрицательного — электрон и антипротон.

Полный электрический заряд системы равен алгебраической сумме зарядов тел, входящих в систему, т. е.:

Закон сохранения заряда: в замкнутой, электрически изолированной, системе полный электрический заряд остается неизменным, какие бы процессы ни происходили внутри системы.

Изолированная система — это система, в которую из внешней среды через ее границы не проникают электрически заряженные частицы либо какие-нибудь тела.

Закон сохранения заряда — это следствие сохранения числа частиц, совершается перераспределение частиц в пространстве.

Проводники — это тела, имеющие электрические заряды, которые могут свободно перемещаться на значительные расстояния.
Примеры проводников: металлы в твердом и жидком состояниях, ионизированные газы, растворы электролитов.

Диэлектрики — это тела, имеющие заряды, которые не могут перемещаться от одной части тела к другой, т. е. связанные заряды.
Примеры диэлектриков: кварц, янтарь, эбонит, газы в нормальных условиях.

Электризация — это такой процесс, вследствии которого тела приобретают способность принимать участие в электромагнитном взаимодействии, т. е. приобретают электрический заряд.

Электризация тел — это такой процесс перераспределения электрических зарядов, находящихся в телах, в результате которого заряды тел становятся противоположных знаков.

Виды электризации:
1) Электризация за счет электропроводности. Когда два металлических тела соприкасаются, одно заряженное и другое нейтральное, то происходит переход некоторого числа свободных электронов с заряженного тела на нейтральное, если заряд тела был отрицательным, и наоборот, если заряд тела положителен.

В итоге этого в первом случае, нейтральное тело получит отрицательный заряд, во втором — положительный.

2) Электризация трением. В результате соприкосновения при трении некоторых нейтральных тел электроны передаются отодного тела к другому. Электризация трением есть причина возникновения статического электричества, разряды которого можно заметить, например, если расчесывать волосы пластмассовой расческой или снимая с себя синтетические рубашку или свитер.

3) Электризация через влияние возникает, если заряженное тело поднести к концу нейтрального металлического стержня, при этом в нем случается нарушение равномерного распределения положительных и отрицательных зарядов. Их распределение происходит своеобразным образом: в одной части стержня возникает избыточный отрицательный заряд, а в другой — положительный. Такие заряды называются индуцированными, возникновение которых объясняется движением свободных электронов в металле под действием электрического поля поднесенного к нему заряженного тела.

Точечный заряд — это заряженное тело, размерами которого в данных условиях можно пренебречь.

Точечный заряд — это материальная точка, которая имеет электрический заряд.
Заряженные тела взаимодействуют друг с другом следующим образом: разноименно заряженные притягиваются, одноименно заряженные отталкиваются.

Закон Кулона: Сила взаимодействия (F) двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда (q1 и q2) и обратно пропорциональна квадрату расстояния между ними.
,
где k=9× 109 (Н× м2)/Кл2 — коэффициент пропорциональности.
СИ: Н

Главное свойство электрического поля — это то, что электрическое поле оказывает влияние на электрические заряды с некоторой силой. Электрическое поле является частным случаем электромагнитного поля.

 

Электростатическое поле — это электрическое поле неподвижных зарядов. Напряженность электрического поля — векторная величина, характеризующая электрическое поле в данной точке. Напряженность поля в данной точке определяется отношением силы, воздействующей на точечный заряд, помещенный в данную точку поля, к величине этого заряда:

k=9× 109 (Н× м2)/Кл2 — коэффициент пропорциональности

Напряженность — это силовая характеристика электрического поля; она позволяет рассчитывать силу, действующую на этот заряд: F = qE.

В Международной системе единиц единицей измерения напряженности является вольт на метр.

 

§ Напряженность электрическою поля () равна отношению силы (), с которой поле действует на точечный заряд, к этому заряду (q).

СИ: Н/Кл; В/м

§ Напряженность поля точечного заряда (в вакууме)
Модуль напряженности (Е) поля точечного заряда (q0) на расстоянии (r) от него равен: ,
где k=9× 109 (Н× м2)/Кл2 — коэффициент пропорциональности.
СИ: Н/Кл

§ Принцип суперпозиции полей
Если в данной точке пространства заряженные частицы создают электрические поля, напряженности которых (), то результирующая напряженность поля в этой точке равна геометрической (векторной) сумме напряженностей.

СИ: Н/Кл

Линии напряженности — это воображаемые линии, необходимые для использования графического изображения электрического поля. Линии напряженности проводят так, чтобы касательные к ним в каждой точке пространства совпадали по направлению с вектором напряженности поля в данной точке.

Электрический диполь — это совокупность двух равных по модулю разноименных точечных зарядов (+q и –q), располагающихся на некотором расстоянии друг от друга.

Дипольный (электрический) момент — это векторная физическая величина, являющаяся основной характеристикой диполя.
В Международной системе единиц единицей измерения дипольного момента является кулон-метр (Кл*м).

Виды диэлектриков:

· полярные, в состав которых входят молекулы, у которых центры распределения положительных и отрицательных зарядов не совпадают (электрические диполи);

· неполярные, в молекулах и атомах которых центры распределения положительных и отрицательных зарядов совпадают.

Поляризация — это процесс, который происходит при помещении диэлектриков в электрическое поле.

Поляризация диэлектриков — это процесс смещения связанных положительных и отрицательных зарядов диэлектрика в противоположные стороны под действием внешнего электрического поля.

Диэлектрическая проницаемость — это физическая величина, которая характеризует электрические свойства диэлектрика и определяется отношением модуля напряженности электрического поля в вакууме к модулю напряженности этого поля внутри однородного диэлектрика.

Диэлектрическая проницаемость
Диэлектрическая проницаемость (ε) — это физическая величина, показывающая, во сколько раз модуль напряженности (Е) электрического поля внутри однородного диэлектрика меньше модуля напряженности (Е0) поля в вакууме.

 


Диэлектрическая проницаемость — величина безразмерная и выражается в безразмерных единицах.
Сила Кулона, если взаимодействующие заряды находятся в однородном диэлектрике, уменьшается в е раз (е –эпсилон-диэлектрическая проницаемость среды).

 

Сегнетоэлектрики — это группа кристаллических диэлектриков, которые не имеют внешнего электрического поля и вместо него возникает спонтанная ориентация дипольных моментов частиц.

Пьезоэлектрический эффект — это эффект при механических деформациях некоторых кристаллов в определенных направлениях, где на их гранях возникают электрические разноименные заряды.

 

Потенциал электрического поля. Электроемкость

Потенциал электростатический — это физическая величина, характеризующая электростатическое поле в данной точке; определяется отношением потенциальной энергии взаимодействия заря- да с полем к значению заряда, помещенного в данную точку поля:

В Международной системе единиц единицей измерения является вольт (В).
Потенциал поля точечного заряда определяется:

При условиях если q > 0, то? > 0; если q < 0, то? < 0. Потенциальная энергия взаимодействия двух точечных зарядов определяется:

Принцип суперпозиции полей для потенциала: если электростатическое поле создается несколькими источниками, то его потен- циал в данной точке пространства определяется как алгебраическая сумма потенциалов:

Разность потенциалов между двумя точками электрического поля — это физическая величина, определяемая отношением работы электростатических сил по перемещению положительного заряда из начальной точки в конечную к этому заряду:

Эквипотенциальные поверхности — это геометрическая область точек электростатического поля, где значения потенциала одинаковы.

Работа при перемещении заряда в однородном электростатическом поле
Работа (А) при перемещении заряда (q) в однородном электростатическом поле напряженностью (Е) не зависит от формы траектории движения заряда, а определяется величиной перемещения (Δ d=d2-d1) заряда вдоль силовых линий поля.

СИ: Дж

§ Потенциальная энергия заряда
Потенциальная энергия (Wp) заряда в однородном электростатическом поле равна произведению величины заряда (q) на напряженность (Е) поля и расстояние (d) от заряда до источника поля.

СИ: Дж

§ Потенциал электростатического поля
Потенциал (φ) данной точки электростатического поля численно равен:
1) потенциальной энергии (Wp) единичного заряда (q) в данной точке: ;
2) произведению напряженности (Е) поля на расстояние (d) от заряда до источника поля:
СИ: В

§ Напряжение (разность потенциалов)
Напряжение (U) или разность потенциалов (φ 12) между двумя точками равна отношению работы поля (А) при перемещении заряда из начальной точки в конечную к этому заряду (q).

СИ: В

§ Связь между напряженностью и напряжением
Чем меньше меняется потенциал () на расстоянии (Δ d), тем меньше напряженность (Е) электростатического поля.

СИ: В/м

 

Электрическая емкость — это физическая величина, которая характеризует электрические свойства проводника, количественная мера его способности удерживать электрический заряд.
Электрическая емкость уединенного проводника определяется отношением заряда проводника к его потенциалу, при этом будем предполагать, что потенциал поля проводника принят равным нулю в бесконечно удаленной точке:

 

Электроёмкость (C) двух проводников — это отношение заряда (q) одного из проводников к разности потенциалов (U) между этим проводников и соседним.

СИ: Ф

Электроёмкость конденсатора
Электроёмкость плоского конденсатора (C) прямо пропорциональна площади пластин (S), диэлектрической проницаемости (ε) размещенного между ними диэлектрика, и обратно пропорциональна расстоянию между пластинами (d).
,
ε 0=8, 85× 10-12 Кл2/(Н× м2) – электрическая постоянная
СИ: Ф

Энергия заряженного конденсатора
Энергия (W) заряженного конденсатора равна:
1) половине произведения заряда (q) конденсатора на разность потенциалов (U) между его обкладками: ;
2) отношению квадрата заряда (q) конденсатора к удвоенной его ёмкости (С): ;
3) половине произведения ёмкости конденсатора (C) на квадрат разности потенциалов (U) между его обкладками: .
СИ: Дж

 

<== предыдущая лекция | следующая лекция ==>
Классификация мемуаров | Глава II. Политическая жизнь современного общества




© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.