Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Нейромедиаторы, их строение и функции, образование и метаболизм. Классификация нейромедиаторов.






Нейромедиа́ торы (нейротрансмиттеры, посредники) — биологически активные химические вещества, посредством которых осуществляется передача электрического импульса с нервной клетки через синаптическое пространство между нейронами. Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия. Нейромедиаторы являются, как и гормоны, первичными мессенджерами, но их высвобождение и механизм действия в химических синапсах сильно отличается от такового гормонов. В пресинаптической клетке везикулы, содержащие нейромедиатор, высвобождают его локально в очень маленький объём синаптической щели. Высвобожденный нейромедиатор затем диффундирует через щель и связывается с рецепторами на постсинаптической мембране. Диффузия является медленным процессом, но пересечение такой короткой дистанции, которая разделяет пре- и постсинаптические мембраны (0, 1 мкм или меньше), происходит достаточно быстро и позволяет осуществлять быструю передачу сигнала между нейронами или между нейроном и мышцей.Недостаток какого-либо из нейромедиаторов может вызывать разнообразные нарушения, например, различные виды депрессии. Также считается, что формирование зависимости от наркотиков и табака связано с тем, что при употреблении этих веществ задействуются механизмы производства нейромедиатора серотонина, а также других нейромедиаторов, блокирующие (вытесняющие) аналогичные естественные механизмы.

Аминокислоты (и их производные). К ним относят таурин, норадреналин, ДОФАминГАМК, глицин, ацетилхолин, гомоцистеин и некоторые другие (адреналин, серотонин, гистамин, серотонин).

Таурин. Таурин образуется из аминокислоты цистеина. Сначала происходит окисление серы в SH-группе до остатка серной кислоты (процесс идет в несколько стадий), а затем происходит декарбоксилирование. Таурин - это необычная кислота, в которой нет карбоксильной группы, а имеется остаток серной кислоты.

Таурин принимает участие в проведении нервного импульса в процессе зрительного восприятия.

Ацетилхолин. Для синтеза холина требуются аминокислоты серин, метионин. Этаноламин может быть использован и в готовом виде. Но, как правило, из крови в нервную ткань поступает уже готовый холин. Второй же предшественник этого нейромедиатора - Ацетил-КоА, синтезируется в нервных окончаниях.

Продукт этой реакции ацетилхолин участвует в синаптической передаче нервного импульса. Он накапливается в синаптических пузырьках, образуя комплексы с отрицательно заряженным белком везикулином. Передача возбуждения с одной клетки на другую осуществляется с помощью специального синаптического механизма.

Синапс – это функциональный контакт специализированных участков плазматических мембран двух возбудимых клеток. Синапс состоит из пресинаптической мембраны, синаптической щели и постинаптической мембраны. Мембраны клеток в месте контакта имеют утолщения в виде бляшек – нервных окончаний. Нервный импульс, достигший нервного окончания, не в состоянии преодолеть возникшее перед ним препятствие - синаптическую щель. После этого электрический сигнал преобразуется в химический. Пресинаптическая мембрана содержит специальные канальные белки, подобные белкам, формирующим натриевый канал в мембране аксона. Они тоже реагируют на мембранный потенциал, изменяя свою конформацию и формируют канал. В результате ионы Са2+ проходят через пресинаптическую мембрану по градиенту концентраций в нервное окончание. Градиент концентраций Са2+ создается работой Са2+-зависимой.

АТФазы – кальциевым насосом. Повышение концентрации Са2+ внутри нервного окончания вызывает слияние 200-300 имеющихся там везикул, заполненных ацетилхолином, с плазматической мембраной. Далее ацетилхолин секретируется в синаптическую щель путем экзоцитоза, и присоединяется к рецепторным белкам, расположенным на поверхности постсинаптической мембраны.

Ацетилхолиновый рецептор представляет собой трансмембранный олигомерный гликопротеиновый комплекс, состоящий из 6 субъединиц: 2-бета, 1-гамма и 1-дельта. Плотность расположения белков-рецепторов в постсинаптической мембране очень велика - около 20000 молекул на 1 мкм2. Пространственная структура рецептора строго сооответствует конформации медиатора.

При взаимодействии с ацетилхолином белок-рецептор так изменяет свою конформацию, что внутри него формируется натриевый канал. Катионная селективность канала обеспечивается тем, что ворота канала сформированы отрицательно заряженными аминокислотами. Таким образом, повышается проницаемость постсинаптической мембраны для натрия и возникает новый импульс (или сокращение мышечного волокна). Деполяризация постсинаптической мембраны вызывает диссоциацию комплекса «ацетилхолин-белок-рецептор» и ацетилхолин освобождается в синаптическую щель. Как только ацетилхолин оказывается в синаптической щели, он за 40 мкс подвергается быстрому гидролизу под действием фермента ацетилхолинэстеразы.

Во время гидролиза ацетилхолина образуется промежуточный фермент-субстратный комплекс, в котором ацетилхолин связан с активным центром фермента через серин.

Необратимое ингибирование холинэстеразы вызывает смерть. Ингибиторами холинэстеразы являются фосфорорганические соединения (хлорофос, дихлофос, табун, зарин, зоман, бинарные яды). Эти вещества связываются ковалентно с серином в активном центре фермента. Некоторые из них синтезированы в качестве инсектицидов, а некоторые – в качестве боевых отравляющих веществ (нервно-паралитические яды). Смерть наступает в результате остановки дыхания.

Обратимые ингибиторы холинэстеразы используются как лечебные препараты. Например, при лечении глаукомы и атонии кишечника.

Катехоламины: норадреналин и дофамин. Адренэргические синапсы встречаются в постганглионарных волокнах, в волокнах симпатической нервной системы, в различных отделах головного мозга. Катехоламины в нервной ткани синтезируются по общему механизму из тирозина. Ключевой фермент синтеза – тирозингидроксилаза, ингибируемая конечными продуктами.

Норадреналин – медиатор в постганглионарных волокнах симпатической и в различных отделах ЦНС.

Дофамин – медиатор проводящих путей, тела нейронов которого расположены в отделе мозга, который отвечает за контроль произвольных движений. Поэтому при нарушении дофаминэргической передачи возникает заболевание паркинсонизм.

Катехоламины, как и ацетилхолин, накапливаются в синаптических пузырьках и тоже выделяется в синаптическую щель при поступлении нервного импульса. Но регуляция в адренэргическом рецепторе происходит иначе. В пресинаптической мембране здесь имеется специальный регуляторный белок - ахромогранин (Мм = 77 кДа), который в ответ на повышение концентрации медиатора в синаптической щели связывает уже выделившийся медиатор и прекращает его дальнейший экзоцитоз. Фермента, разрушающего медиатор, в адренэргических синапсах нет. После передачи импульса молекулы медиатора перекачивается специальной транспортной системой путем активного транспорта с участием АТФ обратно через пресинаптическую мембрану и включается вновь в везикулы. В пресинаптическом нервном окончании излишек медиатора может быть инактивирован моноаминоксидазой, а также катехоламин-О-метилтрансферазой путем метилирования по оксигруппе. Кокаин тормозит активный транспорт катехоламинов.

Передача сигнала в адренэргических синапсах протекает по механизму, известному Вам из лекций по теме «Биохимия гормонов» с участием аденилатциклазной системы. Связывание медиатора с постсинаптическим рецептором почти мгновенно вызывает повышение концентрации ц-АМФ, что приводит к быстрому фосфорилированию белков постсинаптической мембраны. В результате изменяется генерация нервных импульсов постсинаптической мембраной (тормозится). В некторых случаях непосредственной причиной этого является повышение проницаемости постсинаптической мембраны для калия, либо снижением проводимости для натрия (эти события приводят к гиперполяризации).

ГАМК – тормозной медиатор. Повышает проницаемость постсинаптических мембран для ионов калия. Это ведет к изменению мембранного потенциала.

Глицин – тормозной медиатор, по вызываемым эффектам подобен гамк.

Пептиды. Имеют в своем составе от трех до нескольких десятков аминокислотных остатков. Функционируют только в высших отделах нервной системы.

Эти пептиды, как и катехоламины, выполняют функцию не только нейромедиаторов, но и гормонов. Передают информацию от клетки к клетке по системе циркуляции.

Сюда относятся:

1. нейрогипофизарные гормоны (вазопрессин, либерины, статины). Эти вещества одновременно и гормоны и медиаторы;

2. гастроинтестинальные пептиды (гастрин, холецистокинин). Гастрин вызывает чувство голода, холецистокинин вызывает чувство насыщения, а также стимулирует сокращение желчного пузыря и функцию поджелудочной железы;

3. опиатоподобные пептиды (или пептиды обезболивания). Образуются путем реакций ограниченного протеолиза белка-предшественника проопиокортина. Взаимодействуют с теми же рецепторами, что и опиаты (например, морфин), тем самым имитируют их действие. Общее название - эндорфины - вызывают обезболивание. Они легко разрушаются протеиназами, поэтому их фармакологический эффект незначителен;

4. пептиды сна. Их молекулярная природа не установлена. Известно лишь, что их введение животным вызывает сон;

5. пептиды памяти (скотофобин). Накапливается в мозге крыс при тренировке на избегание темноты;

6. пептиды - компоненты ренин-ангиотензиновой системы. Показано, что введение ангиотензина-II в центр жажды головного мозга вызывает появление этого ощущения и стимулирует секрецию антидиуретического гормона.

26)Типы синапсов (химические и электрические). Механизм синаптической передачи. Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза (пузырьки подходят к мембране, сливаются с ней и разрываются, выпуская медиатор). Его выделение происходит небольшими порциями – квантами. Каждый квант содержит от 1.000 до 10.000 молекул нейромедиатора. Небольшое количество квантов выходит из окончания и в состоянии покоя. Когда нервный импульс, т.е. ПД, достигает пресинаптического окончания, происходит деполяризация его пресинаптической мембраны. Открываются ее кальциевые каналы и ионы кальция входят в синаптическую бляшку. Начинается выделение большого количества квантов нейромедиатора. Молекулы медиатора диффундируют через синаптическую щель к постсинаптической мембране и взаимодействуют с ее хеморецепторами. В результате образования комплексов медиатор-рецептор, в субсинаптической мембране начинается синтез так называемых вторичных посредников. В частности цАМФ. Эти посредники активируют ионные каналы постсинаптической мембраны. Поэтому такие каналы называют хемозависимыми или рецепторуправляемыми. Т.е. они открываются при действии ФАВ на хеморецепторы. В результате открывания каналов изменяется потенциал субсинаптической мембраны. Такое изменение называется постсинаптическим потенциалом. Электрические синапсы. представляет собой щелевидное образование (размеры щели до 2 нм) с ионными мостиками-каналами между двумя контактирующими клетками. Петли тока, в частности при наличии потенциала действия (ПД), почти беспрепятственно перескакивают через такой щелевидный контакт и возбуждают, т.е. индуцируют генерацию ПД второй клетки. В целом, такие синапсы (они называются эфапсами) обеспечивают очень быструю передачу возбуждения. Но в то же время с помощью этих синапсов нельзя обеспечить одностороннее проведение, т. к. большая часть таких синапсов обладает двусторонней проводимостью. Кроме того, с их помощью нельзя заставить эффекторную клетку (клетку, которая управляется через данный синапс) тормозить свою активность. Аналогом электрического синапса в гладких мышцах и в сердечной мышце являются щелевые контакты типа нексуса. Химические синапсы. По строению химические синапсы представляют собой окончания аксона (терминальные синапсы) или его варикозную часть (проходящие синапсы), которая заполнена химическим веществом - медиатором. В синапсе различают пресинаптический элемент, который ограничен пресинаптической мембраной, постсинаптический элемент, который ограничен постсипаптической мембраной, а также внесинаптическую область и синаптическую щель, величина которой составляет в среднем 50 нм. В литературе существует большое разнообразие в названиях синапсов. Например, синаптическая бляшка - это синапс между нейронами, концевая пластинка - это постсинаптическая мембрана мионеврального синапса, моторная бляшка - это пресинаптичсское окончание аксона на мышечном волокне.

. Синапс – это специализированное структурное соединение между клетками, обеспечивающее взаимное влияние между ними. Через синапсы передаются возбуждающие и тормозные влияния между двумя возбудимыми клетками, осуществляется трофическое влияние, синапсы играют важную роль в реализации механизмов памяти.

Все синапсы классифицируются по следующим критериям:

1. По виду соединяемых клеток:

· межнейронные – локализуются в ЦНС и вегетативных ганглиях;

· нейроэффекторные – соединяют эфферентные нейроны соматической и вегетативной нервной системы с исполнительными клетками;

· нейрорецепторные – осуществляют контакты во вторичных рецепторах между рецепторной клеткой и дендритом афферентного нейрона.

2. По эффекту: возбуждающие и тормозящие.

3. В зависимости от местоположения в ЦНС: аксосоматические, аксодендритные, аксоаксональные, дендросоматические и дедродендритные.

4. По способу передачи сигналов:

· Химические – наиболее распространенные в ЦНС, в которых посредником (медиатором) передачи является химическое вещество. Химические синапсы по природе медиатора делят на холинэргические (медиатор – ацетилхолин), адренэргические (норадреналин), дофаминэргические (дофамин), ГАМК-эргические (γ -аминомасляная кислота) и т.д.

· Электрические, в которых сигналы передаются электрическим током;

· Смешанные синапсы – электрохимические.

Механизм синаптической передачи сигналов.

Химические синапсы – это преобладающий тип синапсов в мозгу млекопитающих и человека. В химическом синапсе выделяют пресинаптическое окончание, синаптическую щель и постсинаптическую мембрану.

В пресинаптическом окончании находятся синаптические пузырьки – везикулы – диаметром до 200 нм, которые образуются либо в теле нейрона и с помощью аксонного транспорта доставляются в пресинаптическое окончание, либо синтезируются (или ресинтезируются) в самом пресинаптическом окончании. Везикулы содержат медиаторы, необходимые для передачи влияния одной клетки на другую. Для синтеза медиатора нужны ферменты, которые образуются в теле клетки на рибосомах и доставляются в пресинаптическое окончание аксонным транспортом. Кроме везикул с медиатором в пресинаптическом окончании имеются митохондрии, которые обеспечивают энергией процесс синаптической передачи. Эндоплазматическая сеть окончания содержит депонированный Са+. Микротрубочки и микрофиламенты участвуют в передвижении везикул. Пресинаптическое окончание имеет пресинаптическую мембрану. Пресинаптической мембраной называют часть пресинаптического окончания, которая ограничивает синаптическую щель.

Синаптическая щель имеет ширину 20-50 нм. В ней содержится межклеточная жидкость и вещество мукополисахаридной природы в виде тяжей между пре- и постсинаптической мембранами. В синаптической щели также находятся ферменты, которые могут разрушать медиатор.

Постсинаптическая мембрана – утолщенная часть клеточной мембраны иннервируемой клетки, содержащая белковые рецепторы, имеющие ионные каналы и способные связывать молекулы медиатора. Постсинаптическую мембрану нервно-мышечного синапса называют также концевой пластинкой.

 

1. Потенциал действия поступает в пресинаптическое окончание.

2. После поступления ПД к пресинаптическому окончанию происходит деполяризация мембраны окончания, активируются потенциал-зависимые кальциевые каналы и в синаптическую терминаль входит Са+.

3. Повышение концентрации ионов Са+ активирует транспортную систему, что инициирует их экзоцитоз.

4. Содержимое везикул выделяется в синаптическую щель.

5. Молекулы медиатора, диффундируются в синаптической щели, связываются с рецепторами постсинаптической мембраны.

6. Рецепторы постсинаптической мембраны активируют ионные каналы.

7. В результате под действием медиатора происходит активация ионных каналов и переход по этим каналам ионов К+ и Nа+ по их градиентам концентрации. Движение ионов формирует постсинаптический потенциал, который по своим свойствам является локальным ответом.

8. Медиатор, находящийся в контакте с рецепторами постсинаптической мембраны и в синаптической щели, разрушается ферментами.

9. Продукты разрушения медиатора и не разрушенный медиатор всасываются преимущественно в пресинаптическое окончание, где осуществляется ресинтез медиатора и помещение его в везикулы.

На все эти процессы требуется определенное время, которое получило название синаптической задержки и составляет 0, 2-0, 5 мс. Синаптическая задержка пропорционально зависит от температуры.

Выделение молекул медиатора из пресинаптического окончания пропорционально количеству поступившего туда Са+ в степени n = 4. Следовательно, химическое звено пресинаптического окончания работает как усилитель электрических сигналов.

 

Электрические синапсы широко распространены в нервной системе беспозвоночных и низших позвоночных животных. У млекопитающих они имеются в стволе мозга в ядрах тройничного нерва, в вестибулярных ядрах Дейтериса и в нижней оливе. В электрических синапсах узкие щелевые контакты отличаются низким электрическим сопротивлением, в них почти нет токов утечки через внеклеточную среду, поэтому изменения потенциала в пресинаптической мембране могут эффективно передаваться на электрочувствительную постсинаптическую мембрану, которая под воздействием потенциалов действия пресинаптической мембраны изменяет ионную проницаемость и может генерировать потенциалы действия. В электрических синапсах проведение возбуждения происходит без синаптической задержки, ток возможен в обоих направлениях, но легче в одном. Эти синапсы дают возможность получать постоянные, повторяющиеся реакции и синхронизировать активность многих нейронов.

 

27)Нервно-мышечные соединения.

 

Нервно-мышечный синапс (мионевральный синапс) — эффекторное нервное окончание на скелетном мышечном волокне. Зона контакта двигательного окончания и мышечного волокна, которое иннервируется им. Каждое мышечное волокно иннервируется веточкой аксона двигательного нейрона, который, оканчиваясь на волокне, образует двигательную концевую пластинку. Структура, соединяющая нервное окончание и мышечное волокно - аксо-мышечный синапс - состоит из пресинаптической мембраны (плазматическая мембрана нервного окончания) и постсинаптической мембраны (плазматическая мембрана мышечного волокна), разделенных синаптической щелью, куда из нервного окончания выделяется нейромедиатор, вызывая сокращение мышцы.

Нервный отросток проходя через сарколемму мышечного волокна утрачивает миелиновую оболочку и образует сложный аппарат с плазматической мембраной мышечного волокна, образующийся из выпячиваний аксона и цитолеммы мышечного волокна, создавая глубокие «карманы». Синаптическая мембрана аксона и постсинаптическая мембрана мышечного волокна разделены синаптической щелью. В этой области мышечное волокно не имеет поперечной исчерченности, характерно скопление митохондрий и ядер. Терминали аксонов содержат большое количество митохондрий и синаптических пузырьков с медиатором (ацетилхолином).

Электронная микрофотография среза нервномышечного синапса. Т - окончание аксона, М - мышечное волокно. Стрелка указывает на складки базальной мембраны. Шкала 0.3 мкм[1]

Двигательные нервные окончания в гладкой мышечной ткани построены проще — безмиелиновые пучки аксонов проникают между глиоцитами к пласту гладких мышц и образуют булавовидные расширения, которые содержат холинергические и адренергические пузырьки.

 

28). Возбуждающий постсинаптический потенциал. В синапсах, в которых осуществляется возбуждение постсинаптической структуры, обычно происходит повышение проницаемости для ионов натрия. По градиенту концентрации Na+ входят в клетку, что вызывает деполяризацию постсинаптической мембраны. Эта деполяризация получила название: возбуждающий постсинаптический потенциал – ВПСП. ВПСП относится к локальным ответам и, следовательно, обладает способностью к суммации. Выделяют временную и пространственную суммацию.

Принцип временной суммации заключается в том, что импульсы поступают к пресинаптическому окончанию с периодом меньшим, чем период ВПСП. Как следствие, новые порции медиатора выделяются в тот момент, когда трансмембранный потенциал еще не вернулся к уровню мембранного потенциала покоя (МПП). Далее новая деполяризация развивается не с уровня МПП, а с текущего уровня трансмембранного потенциала, который ближе к критическому уровню деполяризации (КУД).

Сущность пространственной суммации заключается в одновременной стимуляции постсинаптической мембраны синапсами, расположенными близко друг от друга. В этом случае ВПСП каждого синапса суммируются.

Если величина ВПСП достаточно велика и достигает критического уровня деполяризации (КУД), то генерируется ПД. Однако не все участки мембраны обладают одинаковой способностью к генерации ВПСП. Так, аксонный холмик, являющийся начальным сегментом аксона относительно сомы, имеет приблизительно в 3 раза более низкий порог электрического раздражения. Следовательно, синапсы, расположенные на аксональном холмике, обладают большей возможностью к генерации ПД, чем синапсы дендритов и сомы. От аксонального холмика ПД распространяется в аксон, а также ретроградно в сому.

Тормозной постсинаптический потенциал (ТПСП). Задачей постсинаптического торможения является снижение возбудимости мембраны нейрона, которое достигается применением тормозящих медиаторов. Например, ГАМК или глицина. Первая, взаимодействуя с рецептором, открывает в постсинаптической мембране хлорные каналы. Это приводит к движению Cl- по электрохимическому градиенту. В результате развивается гиперполяризация, в реализации которой принимают участие и выходящие из клетки К+. В результате гиперполяризации увеличивается расстояние до КУДа и, следовательно, уменьшается возбудимость.

30)Функции спинного мозга – проводниковая и рефлекторная.

Проводниковая функция. Проводниковая функция спинного мозга осуществляется с помощью нисходящих и восходящих проводящих путей.

Афферентная информация поступает в спинной мозг через задние корешки, эфферентная импульсация и регуляция функций различных органов и тканей организма осуществляется через передние корешки (закон Белла – Мажанди).

Каждый корешок представляет собой множество нервных волокон.

Все афферентные входы в спинной мозг несут информацию от трех групп рецепторов: 1) от кожных рецепторов (болевых, температурных, прикосновения, давления, вибрации); 2) от проприорецепторов (мышечных - мышечных веретен, сухожильных – рецепторов Гольджи, надкостницы и оболочек суставов); 3) от рецепторов внутренних органов – висцерорецепторов (механо- и хеморецепторов).

Медиатором первичных афферентных нейронов, локализующихся в спинальных ганглиях, является, по-видимому, субстанция Р.

Значение афферентной импульсации, поступающей в спинной мозг, заключается в следующем: 1) участие в координационной деятельности ЦНС по управлению скелетной мускулатурой. При выключении афферентной импульсации от рабочего органа управление им становится несовершенным. 2) участие в процессах регуляции функций внутренних органов. 3) поддержание тонуса ЦНС; при выключении афферентной импульсации наступает уменьшение суммарной тонической активности ЦНС. 4) несет информацию об изменениях окружающей среды. Основные проводящие пути спинного мозга приведены в таблице 1.

Таблица 1. Основные проводящие пути спинного мозга

 

Восходящие (чувствительные) пути Физиологическое значение
Клиновидный пучок (Бурдаха) проходит в задних столбах, импуьсация поступает в кору Осознаваемая проприорецептивная импульсация от нижней части туловища и ног
Тонкий пучок (Голля), проходит в задних столбах, импульсация поступает в кору Осознаваемая проприорецептивная импульсация от верхней части туловища и рук
Задний спинно-мозжечковый (Флексига) Не осознаваемая проприорецептивная импульсация
Передний спинно-мозжечковый (Говерса) То же
Латеральный спиноталамический Болевая и температурная чувствительность
Передний спиноталамический Тактильная чувствительность, прикосновение, давление
Нисходящие (двигательные) пути Физиологическое значение
Латеральный кортикоспинальный (пирамидный) Импульсы к скелетным мышцам
Передний кортикоспинальный (пирамидный) То же
Руброспинальный (Монакова) проходит в боковых столбах Импульсы, поддерживающие тонус скелетных мышц
Ретикулоспинальный, проходит в передних столбах Импульсы, поддерживающие тонус скелетных мышц с помощью возбуждающих и тормозящих влияний на ά - и γ -мотонейроны, а также регулирующие состояние спинальных вегетативных центров
Вестибулоспинальный, проходит в передних столбах Импульсы, обеспечивающие поддержание позы и равновесия тела
Тектоспинальный, проходит в передних столбах Импульсы, обеспечивающие осуществление зрительных и слуховых двигательных рефлексов (рефлексов четверохолмия)

 

III. Рефлексы спинного мозга. Спинной мозг выполняет рефлекторную соматическую и рефлекторную вегетативную функции.

Сила и длительность всех спинальных рефлексов увеличиваются при повторном раздражении, при увеличении площади раздражаемой рефлексогенной зоны вследствие суммации возбуждения, а также при увеличении силы стимула.

Соматические рефлексы спинного мозга по своей форме в основном являются сгибательными и разгибательными рефлексами сегментарного характера. Соматические спинальные рефлексы можно объединить в две группы по следующим признакам:

╠ Во-первых, по рецепторам, раздражение которых вызывает рефлекс: а) проприоцептивные, б) висцероцептивные, в) кожные рефлексы. Рефлексы, возникающие с проприорецептров, участвуют в формировании акта ходьбы и регуляции мышечного тонуса. Висцерорецептивные (висцеромоторные) рефлексы возникают с рецепторов внутренних органов и проявляются в сокращении мышц брюшной стенки, грудной клетки и разгибателей спины. Возникновение висцеромоторных рефлексов связано с конвергенцией висцеральных и соматических нервных волокон к одним и тем же интернейронам спинного мозга.

╠ Во-вторых, по органам: а) рефлексы конечностей; б) брюшные рефлексы; в) яичковый рефлекс; г) анальный рефлекс.

1. Рефлексы конечностей. Эту группу рефлексов в клинической практике исследуют наиболее часто.

▓ Сгибательные рефлексы. Сгибательные рефлексы делятся на фазные и тонические.

Фазные рефлексы – это однократное сгибание конечности при однократном раздражении кожи или проприорецепторов. Одновременно с возбуждением мотонейронов мышц-сгибателей происходит реципрокное торможение мотонейронов мышц-разгибателей. Рефлексы, возникающие с рецепторов кожи, являются полисинаптическими, они имеют защитное значение. Рефлексы, возникающие с проприорецепторов, могут быть моносинаптическими и полисинаптическими. Фазные рефлексы с проприорецепторов участвуют в формировании акта ходьбы. По степени выраженности фазных сгибательных и разгибательных рефлексов определяют состояние возбудимости ЦНС и возможные ее нарушения.

В клинике исследуют следующие сгибательные фазные рефлексы: локтевой и ахиллов (проприоцептивные рефлексы) и подошвенный рефлекс (кожный). Локтевой рефлекс выражается в сгибании руки в локтевом суставе, возникает при ударе рефлекторным молоточком по сухожилию m. вiceps brachii (при вызове рефлекса рука должна быть слегка согнута в локтевом суставе), его дуга замыкается в 5-6-ом шейных сегментах спинного мозга (С5 – С6). Ахиллов рефлекс выражается в подошвенном сгибании стопы в результате сокращения трехглавой мышцы голени, возникает при ударе молоточком по ахиллову сухожилию, рефлекторная дуга замыкается на уровне крестцовых сегментов (S1 – S2). Подошвенный рефлекс – сгибание стопы и пальцев при штриховом раздражении подошвы, дуга рефлекса замыкается на уровне S1 – S2.

Тонические сгибательные, а также разгибательные рефлексы возникают при длительном растяжении мышц, их главное назначение – поддержание позы. Тоническое сокращение скелетных мышц является фоновым для осуществления всех двигательных актов, осуществляемых с помощью фазических сокращений мышц.

Разгибательные рефлексы, как сгибательные, бывают фазными и тоническими, возникают с проприорецепторов мышц-разгибателей, являются моносинаптическими. Одновременно со сгибательным рефлексом возникает перекрестный разгибательный рефлекс другой конечности.

Фазные рефлексы возникают в ответ на однократное раздражение мышечных рецепторов. Например, при ударе по сухожилию четырехглавой мышцы бедра ниже коленной чашечки возникает коленный разгибательный рефлекс вследствие сокращения четырехглавой мышцы бедра. Во время разгибательного рефлекса мотонейроны мышц-сгибателей тормозятся с помощью вставочных тормозных клеток Реншоу (реципрокное торможение). Рефлекторная дуга коленного рефлекса замыкается во втором – четвертом поясничных сегментах (L2 – L4). Фазные разгибательные рефлексы участвуют в формировании ходьбы.

Тонические разгибательные рефлексы представляют собой длительное сокращение мышц-разгибателей при длительном растяжении сухожилий. Их роль – поддержание позы. В положении стоя тоническое сокращение мышц-разгибателей предотвращает сгибание нижних конечностей и обеспечивает сохранение вертикального положения. Тоническое сокращение мышц спины обеспечивает осанку человека. Тонические рефлексы на растяжение мышц (сгибателей и разгибателей) называют также миотатическими.

Рефлексы позы – перераспределение мышечного тонуса, возникающее при изменении положения тела или отдельных его частей. Рефлексы позы осуществляются с участием различных отделов ЦНС. На уровне спинного мозга замыкаются шейные позные рефлексы. Имеется две группы этих рефлексов – возникающие при наклоне и при повороте головы.

Первая группа шейных позных рефлексов существует только у животных и возникает при наклоне головы вниз (кпереди). При этом увеличивается тонус мышц-сгибателей передних конечностей и тонус мышц-разгибателей задних конечностей, в результате чего передние конечности сгибаются, а задние разгибаются. При наклоне головы вверх (кзади) возникают противоположные реакции – передние конечности разгибаются вследствие увеличения тонуса их мышц-разгибателей, а задние конечности сгибаются вследствие повышения тонуса их мышц-сгибателей. Эти рефлексы возникают с проприорецепторов мышц шеи и фасций, покрывающих шейный отдел позвоночника. В условиях естественного поведения они увеличивают животному шанс достать пищу, находящуюся выше или ниже уровня головы.

Рефлексы позы верхних конечностей у человека утрачены. Рефлексы нижних конечностей выражаются не в сгибании или разгибании, а в перераспределении мышечного тонуса, обеспечивающего сохранение естественной позы.

Вторая группа шейных позных рефлексов возникает с тех же рецепторов, но только при поворотах головы вправо или влево. При этом повышается тонус мышц-разгибателей обеих конечностей на стороне, куда повернута голова, и повышается тонус мышц-сгибателей на противоположной стороне. Рефлекс направлен на сохранение позы, которая может быть нарушена вследствие изменения положения центра тяжести после поворота головы. Центр тяжести смещается в сторону поворота головы – именно на этой стороне повышается тонус мышц-разгибателей обеих конечностей. Подобные рефлексы наблюдаются и у человека.

▓ Ритмические рефлексы – многократное повторное сгибание и разгибание конечностей. Примерами могут служить чесательный и шагательный рефлексы.

2. Брюшные рефлексы (верхний, средний и нижний) проявляются при штриховом раздражении кожи живота. Выражаются в сокращении соответствующих участков мускулатуры стенки живота. Это защитные рефлексы. Для вызова верхнего брюшного рефлекса раздражение наносят параллельно нижним ребрам непосредственно под ними, дуга рефлекса замыкается на уровне грудных сегментов спинного мозга (Th8 – Th9). Средний брюшной рефлекс вызывают раздражением на уровне пупка (горизонтально), дуга рефлекса замыкается на уровне Th9 – Th10. Для получения нижнего брюшного рефлекса раздражение наносят параллельно паховой складке (рядом с ней), дуга рефлекса замыкается на уровне Th11 – Th12.

3. Кремастерный (яичковый) рефлекс заключается в сокращении m. сremaster и поднимании мошонки в ответ на штриховое раздражение верхней внутренней поверхности кожи бедра (кожный рефлекс), это также защитный рефлекс. Его дуга замыкается на уровне L1 – L2.

4. Анальный рефлекс выражается в сокращении наружного сфинктера прямой кишки в ответ на штриховое раздражение или укол кожи вблизи заднего прохода, дуга рефлекса замыкается на уровне S2 – S5.

Вегетативные рефлексы спинного мозга осуществляются в ответ на раздражение внутренних органов и заканчиваются сокращением гладкой мускулатуры этих органов. Вегетативные рефлексы имеют в спинном мозге свои центры, которые обеспечивают иннервацию сердца, почек, мочевого пузыря и т.д.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.