Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Механизм внешнего дыхания и газообмен в лёгких






У мелких животных дыхательный цикл состоит из вдоха и выдоха, у крупных – включает три фазы: вдох, выдох и паузу. У человека длительность спокойного выдоха на 10-20 % больше длительности вдоха. В условиях полного покоя дыхательная пауза имеет максимальную длительность, при физических или эмоциональных нагрузках – резко сокращается.

Вентиляция лёгких осуществляется за счет создания разности давления между альвеолярным и атмосферным воздухом.

При вдохе давление в альвеолярном пространстве значительно снижается (за счет расширения грудной полости) и становится меньше атмосферного (на 3-5 мм рт. ст.), поэтому воздух из атмосферы входит в воздухоносные пути.

При выдохе давление в альвеолярном пространстве приближается к атмосферному давлению или даже становится выше его (форсированный выдох). Это приводит к удалению очередной порции воздуха из легких.

Внутриплевральное давление меньше атмосферного: на вдохе на 4-9 мм рт.ст., на выдохе на 2-4 мм рт.ст..

При спокойном вдохе и выдохе через легкие проходит около 500 мл воздуха – дыхательный объём (ДО). Из них часть заполняет анатомическое мертвое пространство (около 175 мл). До основной среды доходит около 325 мл воздуха.

В среднем акт дыхания совершается за 4-10 с. Акт вдоха проходит несколько быстрее, чем акт выдоха. За минуту совершается 6-16 дыхательных циклов. Через легкое за минуту проходит около 3-8 л воздуха – это минутный объем дыхания (МОД) или легочная вентиляция.

При форсированном (глубоком) вдохе человек может, после ДО, дополнительно вдохнуть до 2500 мл. Это резервный объем вдоха (РОВд).

Резервный объем выдоха (РОВ) – количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха.

Остаточный объем лёгких (ООЛ) – количество воздуха, оставшееся в легких после максимального выдоха. Даже при самом глубоком выдохе в альвеолах и воздухоносных путях остается некоторое количество воздуха.

Ёмкости легких:

Общая емкость легких (ОЕЛ) – количество воздуха, находящегося в легких после максимального вдоха. Равна сумме – остаточный объем + жизненная емкость легких.

Жизненная емкость легких (ЖЕЛ) – наибольшее количество воздуха, которое можно выдохнуть после максимального вдоха. ЖЕЛ = дыхательный объем + резервный объем вдоха + резервный объем выдоха. У мужчин ростом 180 см ЖЕЛ ~ 4, 5 л. У пловцов и гребцов до 8, 0 л.

Резерв вдоха – максимальное количество воздуха, которое можно вдохнуть после спокойного выдоха. Равен сумме – дыхательный объем + резервный объем вдоха.

Функциональная остаточная емкость (ФОЕ) – количество воздуха, остающееся в легких после спокойного выдоха. Равен сумме – резервный объем выдоха + остаточный объем. У молодых – 2, 4 л и около 3, 4 у пожилых.

Ключевыми показателями являются – ДО, ЖЕЛ, ФОЕ. У женщин эти показатели, как правило, на 25 % ниже, чем у мужчин.

При спокойном дыхании ФОЕ обновляется примерно на 1/7 часть. За счет этого процентное содержание кислорода и углекислого газа (парциальное давление этих газов) сохраняется на постоянном уровне. Задача всех регуляторных механизмов дыхания - поддерживать постоянство парциального давления кислорода и углекислого газа в альвеолярном пространстве.

Дыхательная мускулатура.

Акт вдоха (инспирация) – процесс активный. Расширение грудной полости совершается дыхательными мышцами. Главная мышца – диафрагма. При её сокращении уплощается купол диафрагмы, что приводит к увеличению верхне-нижнего размера грудной полости. 70-100% вентиляции легких обеспечивается работой диафрагмальных мышц. При спокойном вдохе участвуют т, акже межхрящевые участки межреберных мышц краниальных межреберий, а также наружные межреберные мышцы. При их сокращении поднимаются ребра, отходит грудина. Размеры грудной полости увеличиваются в переднезаднем и поперечном направлениях. При форсированном вдохе дополнительно включаются лестничная, грудино-ключично-сосцевидная, трапециевидная, большая и малая грудные мышцы, мышцы-разгибатели позвоночника.

Акт выдоха (экспирация) в условиях покоя – процесс пассивный. Он происходит на фоне расслабления инспираторной мускулатуры за счёт эластической отдачи энергии, которая накопилась во время вдоха при растяжении эластических структур легких.

При форсированном выдохе сокращаются внутренние межреберные мышцы, которые активно уменьшают объем грудной полости и тем самым повышают плевральное давление, т.е. создают в альвеолах более высокое давление, чем в атмосфере. Кроме того, сокращаются мышцы брюшной стенки – косая и прямая мышцы живота, межкостные части внутренних межреберных мышц, а также мышцы, сгибающие позвоночник.

Альфа-мотонейроны диафрагмальной мышцы локализованы в шейных сегментах спинного мозга – С2 - С5. В момент возбуждения нейроны посылают к мышечным волокнам ПД с частотой до 50 Гц и вызывают их тетанус.

Мотонейроны межреберных мышц расположены в грудном отделе спинного мозга (Th1 – Th12) и представлены α - и γ -мотонейронами. За счет γ -мотонейронов происходит оценка степени податливости грудной клетки к растяжению. Когда сила дыхательной мускулатуры недостаточна для акта вдоха, происходит активация проприорецепторов дыхательных мышц, а затем – как следствие – α -мотонейронов.

Респираторное сопротивление состоит из эластического и неэластического.

Эластичность включает в себя растяжимость и упругость. Эластические свойства легких обусловлены: 1) эластичностью альвеолярной ткани (35-40 %) и 2) поверхностным натяжением пленки жидкости, выстилающей альвеолы (55-65 %).

Растяжимость альвеолярной ткани связана с наличием эластиновых волокон, которые вместе с коллагеновыми волокнами (обеспечивают прочность альвеолярной стенки) образуют спиральную сеть вокруг альвеол. Длина эластиновых волокон при растяжении увеличивается почти в 2 раза, коллагеновых – на 10%.

Поверхностное натяжение создаётся за счёт сурфактанта, благодаря которому альвеолы не спадаются. Сурфактант обеспечивает эластичность альвеол.

В целом, эластическое сопротивление пропорционально степени растяжения легких при вдохе: чем глубже дыхание, тем больше эластическое сопротивление (эластическая тяга легких).

Реактивное сопротивление обусловлено: 1) аэродинамическим сопротивлением в дыхательных путях, 2) динамическим сопротивлением перемещающихся при дыхании тканей, 3) инерционным сопротивлением перемещающихся тканей. Основной фактор – аэродинамическое сопротивление.

Основное сопротивление, которое испытывает воздух, возникает при прохождении от трахеи до терминальных бронхиол. Именно в этих зонах совершается перемещение воздушного потока путем конвекции. Линейная скорость воздушного потока максимальна в трахее – 98, 4 см/с и минимальна в альвеолярных мешках – 0, 02 см/с.

В альвеолах (респираторной зоне) воздушный поток не движется, а происходит диффузия кислорода, углекислого газа, паров воды по градиенту парциального давления. В этой области воздушные потоки уже не испытывают аэродинамического сопротивления.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.