Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Развитие структурной химии






Наш мир состоит не из 105 элементов, а из огромного числа их соединений. Формулы и модели, построенные химиками, должны объяснять состав химических соединений и их свойства. Как отмечал историк науки Дж. Партингтон, «стремление иметь свой собственный набор формул явно рассматривалось как проявление независимости мышления каждого химика».

Так, Ф. Кекуле предложил для уксусной кислоты 19 формул - каждая формула объясняла одну реакцию (1861). Но здравый смысл подсказывал, что вещество должно иметь молекулы определенной формы. С позиции геометрии было только определенное количество возможностей построения некоторой модели молекулы, и ни одна из них не объясняла всех свойств веществ. Как только Кекуле предложил простую гексагональную схему для объяснения ароматических соединений, он столкнулся с проблемой локализации химических связей. Понимая, что четырехвалентность углерода ведет к тому, что каждый атом углерода имеет одну незадействованную связь, он принял идею чередующихся одинарных и двойных связей. Но тогда могут быть получены два изомера: первый - с двойной связью между добавленными атомами хлора, второй - с одинарной. Но таких изомеров не существует ни с хлором, ни с другими добавленными группами. И в 1872 г. Кекуле предложил идею о том, что связи постоянно «изменяют положение между чередующимися секциями, как пара распахивающихся дверей».

Кекуле не придавал большого значения своим формулам, используя их только в качестве символов для объяснения реакций. В то же время А.М.Бутлеров, напротив, считал, что каждому веществу должна отвечать своя формула с реальным, пусть и не определенным отношением к действительной структуре. Он писал: «Для каждого тела возможна будет в этом смысле одна рациональная формула, и когда сделаются известными общие законы зависимости химических свойств тел от их химического строения, то подобная формула будет отражением всех этих свойств».

Энергетическая неравноценность разных химических связей определяла в теории Бутлерова химическую активность веществ. В некотором роде он осуществил синтез представлений атомистики с непрерывностью химических отношений идеей, отвергнутой Ж.Прустом и Дж.Дальтоном. Появилась новая характеристика - непрерывность изменения энергии химических связей.

Теория Бутлерова называется теорией химического строения потому, что в ней химическая связь и химическая энергия - основа объединения атомов в молекулы. Валентность стала структурной характеристикой связанного атома. Теория Бутлерова установила порядок связей и стала действенным орудием органического синтеза. Были синтезированы многие лекарства, красители, взрывчатые вещества. Но в производстве использовалось дорогое органическое сырье, способы получения многих необходимых веществ не были понятны. Например, при выращивании кристаллов с определенными дефектами в решетке было непонятно, как избавиться от других дефектов.

В понятие структуры вошло понятие энергетическая прочность химических связей. Понятие «свойство вещества» расчленилось на два: химические свойства макроскопического тела и реакционная способность отдельных структурных элементов, всей молекулы и всего вещества как совокупности молекул. Свойства вещества оказались зависящими не только от его состава, но и от структуры молекул. На основе учения о валентности была разработана теория строения молекул. Под молекулярной структурой понимают сочетание определенного числа атомов, закономерно расположенных в пространстве и связанных друг с другом посредством химической связи.

Вскоре были открыты оптические и геометрические изомеры органических соединений, которые можно объяснить только разным пространственным расположением молекул. В 1874 г. Я. Вант-Гофф и Бель выдвинули стройную концепцию, получившую название стереохимии. Они расширили теорию Бутлерова, описав изменения свойств вещества под влиянием таких факторов, как зеркальная изомерия, эффекты вращений вокруг какой-то связи и др. Вант-Гофф в книге «Химия в пространстве» высказал мысль о том, что четырехвалентный атом углерода в органических соединениях, расположенный в центре тетраэдра, в вершинах которого находятся связанные с углеродом атомы или атомные группы, является асимметрическим. Из анализа оптических свойств органических соединений он заключил, что любое соединение, вызывающее в растворе поворот плоскости поляризации, содержит атом углерода.

Изучением структур неорганических соединений занялся швейцарский химик А. Вернер и создал координационную теорию комплексных соединений. В «комплексах» вокруг центрального атома группируются в большом количестве атомы, радикалы и даже молекулы из-за возникновения так называемых вторичных валентностей. На основе его теории в наши дни объясняется химическое строение таких веществ, как гемоглобин, хлорофилл, ферменты, лаки. Он обнаружил предсказанные ранее оптически активные неорганические изомеры - соединения железа, кобальта и хрома. Так оптическая активность перестала быть связанной только с атомами углерода.

Сразу же после открытия электрона начали предприниматься попытки связать его с природой химической связи. Немецкий физик Й. Штарк ввел понятие валентных электронов, связав валентность элемента с числом электронов на периферии атома.

Начало квантовой химии было положено работами Ф.Лондона и В.Гайтлера (1927). Они уже говорили об электронном облаке, и вероятность нахождения электрона в какой-то области определяли как квадрат волновой функции. Первые расчеты молекулы водорода показали, что ковалентную связь образуют два электрона с антипараллельными спинами. При этом увеличивается электронная плотность между двумя атомами почти до 20 %, что приводит к уменьшению энергии системы и ее стабилизации. Поэтому пребывание двух таких электронов энергетически более выгодно, чем нахождение одного электрона в поле своего ядра. Так как у атома водорода только один неспаренный электрон, он функционирует как одновалентный элемент. У гелия в нормальном состоянии нет неспаренных электронов - два электрона находятся на одной орбитали. Поэтому возбуждение атома гелия требует больших затрат энергии - 1672 Дж/моль. Такие энергии в ходе обычных химических реакций не наблюдаются, и гелий ведет себя как инертный газ.

Для расчета достаточно сложных молекул американский физик и химик Л. Полинг в 30-е гг. XX в. усовершенствовал и применил метод атомных орбиталей. Его резонансная теория валентности - это попытка объяснить структуру таких молекул, как бензол. По этой теории связи между атомами углерода в молекуле бензола грубо могут описываться как дробные.

Исследовать молекулярные структуры с помощью рентгеновского излучения начали М.Лауэ, Г. и У.Брэгги, П.Дебая и др. Развивался рентгеноструктурный анализ, использовались дифракция рентгеновских лучей и электронов, спектроскопические методы и метод ядерного магнитного резонанса, что позволило определить строение огромного числа молекул. Это и повлияло на развитие методов молекулярной спектроскопии - для наблюдений стали использовать высокочувствительные спектрографы, а для обработки данных - быстродействующие ЭВМ. Наиболее ценным интеллектуальным достижением химии является точное установление молекулярных структур огромного числа веществ - от чистейшей воды и сложных бронзовых сплавов до белка родопсина в палочках сетчатки глаза человека.

Переход от структурной химии к учению о химических процессах - переход на еще более высокий уровень знаний, когда объекты изучаются более разносторонне. При обсуждении теории Бутлерова выяснилось, что связи не должны быть «жесткими». На усилении динамических факторов в понятии структуры настаивал известный химик Н. А. Меншуткин. Масс-спектроскопические и радиоспектроскопические методы дали информацию о динамических аспектах молекул, но не поколебали основных положений структурной химии. В 60-е гг. XX в. выяснилось, что часть систем, которые ранее интерпретировались как качественно отличные друг от друга изомеры, «можно описать как процессы миграции определенной группы атомов между атомными центрами в качественно неизменной молекуле» (Ю.Жданов, Л.Олехнович и В.Минкин). То, что валентность может быть не целочисленной, обнаружилось в новых соединениях, но введение координационного числа не прояснило ситуацию. Квантовая химия вместо валентности свободного атома ввела понятие спин-валентности — числа электронов с неспаренными спинами на внешних орбитах. Вместо подсчета целого числа связей атома с другими атомами рассчитывается сумма кратностей всех его связей, которая может быть и не целочисленной. Теория резонанса Полинга вызвала в свое время острые философские дискуссии. Можно считать, что она явилась удобной моделью: как и в случае с интерпретацией квантовой теории, модель резонансной структуры оказалась далекой от привычных описаний природы и вызвала некоторое смущение части философов и естествоиспытателей проблемой использования моделей вообще.

Наличие или отсутствие связи между атомами изображают в виде графических или структурных формул. Появился термин «топология молекул». Как известно, топология - это раздел математики, который изучает свойства тел, не зависящие от их формы и размеров, или неметрические свойства. Молекулы же обладают как метрическими (длины химических связей, углы между ними и т.п.), так и неметрическими (могут быть циклическими и нециклическими, как бензол и н-бутан соответственно, и т.п.) свойствами. Топология молекулярных систем связана с их свойствами.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.