Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Полупроводники и их применение






Полупроводники

Полупроводниками называют вещества, электрическая проводимость которых при обычных условиях имеет промежуточное значение между проводимостью металлов и хороших диэлектриков. К полупроводникам относятся такие вещества, как германий (Ge), кремний (Si), галлий (Ga), мышьяк (As), индий (In), а также некоторые оксиды, сульфиды и сплавы металлов.

В кристалле Si, типичном полупроводнике, каждый атом своими валентными электронами взаимодействует с четырьмя соседними атомами (рис. 44 а). Эти валентные электроны прочно связаны с кристаллической решёткой, и только при изменении внешних условий, например, нагреве кристалла они могут становиться свободными. Таким образом, в отличие от металлов, удельное сопротивление полупроводников уменьшается с повышением температуры.

Ничтожные примеси (около 0, 001 %) могут в сотни тысяч раз уменьшить удельное сопротивление полупроводника. Если, например, в кристалле Si появляются пятивалентные атомы As, то пятый валентный электрон примесных атомов не участвует в связях с атомами кремния и становится свободным, создавая в полупроводнике электронную проводимость (рис. 44 б). Примеси, создающие такую проводимость называют донорными (отдающими), а полупроводники с донорными примесями – полупроводниками n -типа (от слова n egative – отрицательный).

Присутствующие в кристалле Si атомы трёхвалентных элементов, например, Ga, тоже увеличивают проводимость кристалла, т.к. для образования нормальных связей с четырёхвалентными атомами Si атому Ga необходимо иметь четыре валентных электрона, а у него их только три. Это вакантное место с недостающим электроном называют дыркой (рис. 44 в). Отсутствие электрона в области дырки делает это место положительно заряженным относительно тех мест полупроводника, где примесей нет. Если в дырку случайно попадает электрон расположенного поблизости атома, то данная дырка исчезает, но атом, потерявший электрон, становится обладателем дырки. Таким образом, дырка может двигаться от одного атома к другому. Электрическое поле, приводя к упорядоченному движению электронов, вызывает движение дырок в противоположном направлении. Такой тип электрической проводимости называют дырочной. Примеси, создающие дырочную проводимость называют акцепторными (принимающими), а полупроводники с акцепторными примесями – полупроводниками p -типа (от слова p ositive – положительный).

В большинстве полупроводниковых приборов используются явления, происходящие на границе полупроводников p - и n -типа (p-n -переход). Если напряжённость поля направлена от полупроводника p -типа к n -типу (рис. 44 г, верх), то дырки в полупроводнике p -типа будут двигаться до самого p-n -перехода. Одновременно с этим в полупроводнике n -типа_к p-n -переходу будут двигаться свободные электроны. Встречаясь у p-n -перехода, свободные электроны и дырки будут уничтожать друг друга. Очевидно, что при таком включении p-n -перехода его сопротивление зависит от концентрации дырок в полупроводнике p -типа и концентрации свободных электронов в полупроводнике n -типа. Обе эти концентрации высоки, и поэтому сопротивление p-n -перехода оказывается малым.

Если изменить направление вектора напряжённости на обратное (рис. 44 г, низ), то дырки и свободные электроны будут двигаться от p-n -перехода, создавая около p-n -перехода зону, лишённую носителей тока. Поэтому при таком включении p-n -перехода, его сопротивление очень велико (сравни I 1 и I 2 на рис. 44 г). Таким образом, закон Ома, справедливый для металлических проводников и растворов электролитов, не соблюдается для p-n -перехода.

Способность p-n -перехода хорошо пропускать ток только в одном направлении применяется в полупроводниковых приборах, служащих для преобразования переменного тока в постоянный (выпрямления тока). Сочетание нескольких p-n -переходов позволяет создавать транзисторы - полупроводниковые приборы, используемые для усиления и преобразования электрических сигналов.

Так как проводимость полупроводников изменяется в зависимости от температуры, давления и освещённости, их применяют для изготовления различных чувствительных датчиков.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.