Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Tипы оптических пирометров






Пирометр с исчезающей нитью представляет собой визуальный фотометр, в котором яркость света, излучаемого исследуемым телом (пламенем), измеряется путем сравнения его с яркостью стандартного раскаленного тела (нити лампочки) при одной и той же эффективной длине волны (A =0, 665 мкм).

К и н о ф о т спирометр — это обычный киноаппарат, снабженный красным светофильтром (А=0, б65 мкм) и набором ленточных ламп, устанавливаемых рядом с измеряемым объектом.

В основу этого метода измерения температуры положен принцип фотографирования пламени в собственном свете; при этом пламена с более высокой температурой дадут на фотопленке

           
     
 

Рис. 6.1. Данные о температуре пламени, полученные с помощью кинофотопирометра:

а.— изменение температуры во времени;

б— изменение температуры по высоте пламени;

в— график температурных полей

большие плотности почернения, чем пламена с более низкой температурой. Фотографируя одновременно с пламенем ленточные лампы с известной температурой, получаем на кинокадре плотности почернения s для известных температур.

Для пиротехников этот метод представляет особый интерес, так как.с его помощью можно определять температуру в различных участках пламени, а также.фиксировать изменение температуры во времени (рис. 6.1).

Фотоэлектрический.пирометр ФЭП-0, 65 представляет собой вариант оптического пирометра, разработанного специально для измерения температуры пиротехнических пламен с фиксацией данных измерения на осциллографе. С помощью ФЭП-0, 65 измеряют среднюю яркостную температуру и излуча-тельную способность пламени (количество энергии оп.ределенной длины волны, излучаемое с единицы поверхности тела в единицу времени при температуре T).

Цветной пирометр (краоно-синего отношения) представляет собой регистрирующий люксметр, измеряющий интенсивность излучения в красной и синей части спектра одновременно Наиболее распространенный вариант конструкции (рис. 6 2) - блок из двух фотоэлементов, перед которыми установлен вращающийся диск, с двумя рядами отверстий; на одном ряду отверстий укреплены светофильтры (красный A=0, 685 мкм и синий A=045.6 мкм) Фотоэлементы установлены таким образом, что луч одновременно попадает на оба фотоэлемента. Фотоэлемент без светофильтра служит для внесения поправки на изменение светового потока за время перемещения светофильтров.

Рис. 6.2. Схема цветового пирометра:

/-вращающийся диск; 2-светофильтр: 3-фотоэлемент:

4-электродвигатель; 5-выводы контактов; 6-корпус;

7—осциллограф

 

Цветную температуру.можно определить также спектральным методом по сплошному спектру, используя те его участки, где нет наложенных та него полос и линий Описание методов измерения температуры пламен дается в работах [44, 68).

Температура пламени может быть также определена методом обращения спектральных линий. Установка для измерения температуры факела пламени конденсированных систем этим методом описана в монографии (68].

Значительно более точно, чем температура пламени, оптическим пирометром определяется температура раскаленного твердого или жидкого шлака, образующегося при горении.

Вртенберг определил оптическим методом температуру льющейся струи железоалюминиевого термита равной 2400±50 C. Эггерт, Эдер и Джиобек измерили интенсивность излучения магниевых пламен в различных частях спектра и на основании этого вычислили «цветную температуру» пламени:

при горении магния в кислороде.. ~370

при горении магния на воздухе.. ~3400°С

при горении стехиометрической смеси Th(N03)4+Mg ~3100° С

Температура горения алюминия в кислороде, измеренная Квеллероном и Скартазяни при помощи яркостного пирометра, была найдена равной 3000—3300° С.

Из этого следует, что при горении порошков Mg и А1 может быть получена температура не выше чем 3000—3500° С. Получению более высокой температуры препятствует большая затрата тепла на испарение и частичное разложение оксидов этих металлов.

Рис. 6.3. Зависимость температуры горения простых веществ (элементов) в кислороде в К при атмосферном давлении от пппялкппого номеоа элемента.

 

 

Наиболее высокая температура при горении металлических порошков возникает при горении порошка циркония в кислороде.

Оценка ее при помощи термодинамических расчетов дает значение ~4900 К.

Предел температуры здесь определяется температурой кипения оксида ZrO2, равной ~4300° С (при атмосферном давлении).

Следовательно, возможность достижения очень высоких температур определяется не только высокой калорийностью горючего, но и предельно высокой температурой кипения, а также большой химической устойчивостью продуктов горения (оксидов металлов).

Температура горения титана в кислороде по приближенной оценке Гаррисона лежит в пределах 2950—3500° С.

Зависимость между температурой горения элементов в кислороде и порядковым номером элемента в периодической системе элементов показана на рис. 6.3.

В заключение еще раз заметим, что когда говорят о температуре пламени, то обычно подразумевают температуру в самой горячей зоне пламени.

Температуру горения дымовых составов, если она не выше 600° С, можно измерять кварцевыми ртутными термометрами, в которых ртуть находится под давлением. Необходимым условием получения значений, близких к истине, является малая скорость горения, чтобы термометр успевал достаточно прогреться.

Термопара хромель — алюмель может служить для измерения температуры до 1300° С. Для измерения температур до 1600° С можно воспользоваться термопарой Pt/Pt—Rh (температура плавления платины 1771° С).

Термопары W—Ir и W—Re могут быть использованы для измерения температур соответственно до 2100 и 2700° С, но при работе с ними надо учитывать, что они весьма чувствительны к воздействию окислительной среды.

Термопара Ir—Rh/Ir (40% Ir) градуируется и применяется для измерения температур до 2100° С с точностью ±10°. В течение ограниченного времени она может применяться и на воздухе.

При измерениях температуры горения при помощи термопар следует всячески стремиться к уменьшению их тепловой инерции. Близкие к действительности результаты можно получить, если провода термопары будут диаметром не более 50—100 мкм илд же будут использованы ленточки такой же толщины; инерция милливольтметра также должна быть по.возможности минимальной.

В зависимости от диаметра проводов термопары (неармированной) для 'состава красного дыма (краситель — родамин) были получены следующие значения:

диаметр проводов в мм.............................. 0, 5...... 0, 2..... 0, 1

максимальная температура реакции в °С.... 338..... 697...837

Вероятно, истинная температура реакции в данном случае — порядка 900°.

При измерении температуры горения двух других смесей сигнальных дымов при помощи железо-константановой термопары с диаметром проводов 0, 1 мм были получены данные:

смесь № 1....... 1080° С

смесь № 2....... 1000° С

Расчетным путем для этих смесей были получены значения:

смесь № 1....... 1262° С

смесь № 2....... 1070° С

Хилл и Саттон при помощи термопар исследовали температуру горения двойных смесей, изменяя соотношения между компонентами. Результаты этой работы показаны на рис. 6.4.

Рис. 6.4. Максимальная температура при горении смесей, измеренная термопарой Pt — Pt/Rh:

 

% горючего в двойной cмecu

/—ВаО2+Мо; 2-КМп04+Мо; 3— BaO2+S; 4—BaO2+Fe; 5—KMnO4+ +Fe; 6—K2Cr2Oi+Fe

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.