Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Недостатки теории






Расхождение теорий Эйнштейна и Дебая

Теория Эйнштейна, однако, недостаточно хорошо согласуется с результатами экспериментов в силу неточности некоторых предположений Эйнштейна, в частности, предположения о равенстве частот колебаний всех осцилляторов. Более точная теория была создана Дебаем в 1912 году.


 

10. Углова́ я ско́ рость — векторная величина, являющаяся псевдовектором (аксиальным вектором) и характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения в единицу времени:

,

а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.

Единица измерения угловой скорости, принятая в Международной системе единиц (СИ) и системе СГС — радианы в секунду.

Вектор (мгновенной) скорости любой точки (абсолютно) твердого тела, вращающегося с угловой скоростью , определяется формулой:

где — радиус-вектор к данной точке из начала координат, расположенного на оси вращения тела, а квадратными скобками обозначено векторное произведение. Линейную скорость (совпадающую с модулем вектора скорости) точки на определенном расстоянии (радиусе) от оси вращения можно считать так: Если вместо радианов применять другие единицы углов, то в двух последних формулах появится множитель, не равный единице.

Углово́ е ускоре́ ние — псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости движения материальной точки по окружности.

При вращении точки вокруг неподвижной оси, угловое ускорение по модулю равно[1]:

Вектор углового ускорения направлен вдоль оси вращения (в сторону при ускоренном вращении и противоположно — при замедленном).

При вращении вокруг неподвижной точки вектор углового ускорения определяется как первая производная от вектора угловой скорости по времени[2], то есть

,

и направлен по касательной к годографу вектора в соответствующей его точке.

Существует связь между тангенциальным и угловым ускорениями:

,

где R — радиус кривизны траектории точки в данный момент времени. Итак, угловое ускорение равно второй производной от угла поворота по времени или первой производной от угловой скорости по времени.

Угловое ускорение измеряется в рад/с².

Нормальная составляющая ускорения


 

11. Для характеристики переносимой волной энергии русским ученым Н.А. Умовым были введены понятия о скорости и направлении движения энергии, о потоке энергии. Спустя десять лет после этого, в 1884 г., английский ученый Джон Пойнтинг описал процесс переноса энергии с помощью вектора плотности потока энергии.

Введем вектор - приращение плотности электромагнитной энергии, где сама величина w определяется интегралом:

.

Объемная плотность энергии w электромагнитной волны складывается из объемных плотностей и электрического и магнитного полей:

.

Учитывая, что, получим, что плотность энергии электрического и магнитного полей в каждый момент времени одинакова, т.е.. Поэтому

.

Умножив плотность энергии w на скорость υ распространения волны в среде, получим модуль плотности потока энергиипоток энергии через единичную площадку, перпендикулярную направлению распространения волны в единицу времени:

  .

Вектор плотности потока электромагнитной энергии называется вектором Умова–Пойнтинга:

  . (6.4.2)  

Вектор направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны.

Если электромагнитные волны поглощаются или отражаются телами (эти явления подтверждены опытами Герца), то из теории Максвелла следует, что электромагнитные волны должны оказывать на тела давление. Давление ЭМВ объясняется тем, что под действием электрического поля волны заряженные частицы вещества начинают упорядоченно двигаться и подвергаются со стороны магнитного поля действию силы. Однако, значение этого давления ничтожно мало.

Давление света и электромагнитный импульс настолько малы, что непосредственное их измерение затруднительно. Так, зеркало, расположенное на расстоянии 1 м от источника света в миллион свечей (кандел), испытывает давление 10-7 Н/м2. Давление излучения Солнца на поверхность Земли равно 4, 3× 10-6 Н/м2, а общее давление излучения Солнца на Землю равно 6× 108 Н, что в 1013 раз меньше силы притяжения Солнца.

Световое давление было впервые обнаружено и измерено в 1899 г. в Москве русским ученым П.Н. Лебедевым (1866-1912). Его результаты, как и более точные измерения последующих исследователей, согласуются с теорией в пределах ошибок опыта - до 2 %.

Давление света можно рассчитать по формуле:

,

где J – интенсивность света, K – коэффициент отражения.

Опыты Лебедева имели огромное значение для утверждения выводов теории Максвелла о том, что свет представляет собой ЭМВ.

Существование давления ЭМВ приводит к выводу о том, что электромагнитному полю присущ механический импульс.

Выражая импульс как (поле в вакууме распространяется со скоростью света с), получим

,

отсюда

  . (6.4.5)  

Это соотношение между массой и энергией ЭМП является универсальным законом природы, справедливым для любых тел независимо от их внутреннего строения.

Импульс электромагнитного поля, связанного с движущейся частицей, – электромагнитный импульс – оказался пропорциональным скорости частицы υ, что имеет место и в выражении для обычного импульса m υ, где m – инертная масса заряженной частицы. Поэтому коэффициент пропорциональности в полученном выражении для импульса называют электромагнитной массой:

  , (6.4.6)  

где е – заряд движущейся частицы, а – ее радиус.

И даже если тело не обладает никакой иной массой, оказывается, что между импульсом и скоростью заряженной частицы существует соотношение:

  . (6.4.6)  

Это соотношение как бы раскрывает происхождение массы – это электродинамический эффект. Движение заряженной частицы сопровождается возникновением магнитного поля. Магнитное поле сообщает телу дополнительную инертность – при ускорении затрачивается работа на создание магнитного поля, при торможении –работа против затормаживающих сил индукционного происхождения. По отношению к движущемуся заряду электромагнитное поле является средой, неотделимой от заряда.


 

12. Ячейка Вигнера — Зейтца — область пространства, с центром в некоторой точке решётки Браве, которая лежит ближе к этой точке решётки, чем к какой-либо другой точке решётки. Названа в честь американских физиков Юджина Вигнера и Фредерика Зейтца.Свойства[править | править вики-текст]

Ячейка Вингера — Зейтца это примитивная ячейка, обладающая полной симметрией решётки Браве.

На ячейку Вигнера — Зейтца (как и на любую другую элементарную ячейку) приходится один узел решётки Браве.

Элементарная ячейка обратной решётки в форме ячейки Вигнера-Зейтца в обратном пространстве есть первая зона Бриллюэна.

Зона Бриллюэна — отображение ячейки Вигнера-Зейтца в обратном пространстве. В приближении волн Блоха волновая функция для периодического потенциала решётки твёрдого тела полностью описывается её поведением в первой зоне Бриллюэна.

Решётка Браве́ — понятие для характеристики кристаллической решётки относительно сдвигов. Названа в честь французского физика Огюста Браве. Решеткой или системой трансляций Браве называется набор элементарных трансляций или трансляционная группа, которыми может быть получена вся бесконечная кристаллическая решётка. Все кристаллические структуры описываются 14 решётками Браве, число которых ограничивается симметрией.

ндексы Миллера — кристаллографические индексы, характеризующие расположение атомных плоскостей в кристалле. Индексы Миллера связаны с отрезками, отсекаемыми выбранной плоскостью на трёх осях кристаллографической системы координат (не обязательно декартовой). Таким образом, возможны три варианта относительного расположения осей и плоскости:

· плоскость пересекает все три оси

· плоскость пересекает две оси, а третьей параллельна

· плоскость пересекает одну ось и параллельна двум другим

Индексы Миллера выглядят как три взаимно простых целых числа, записанные в круглых скобках: (111), (101), (110)…


 

13. Абсолютно чёрное тело — физическая идеализация, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

В 1893 году Вильгельм Вин, воспользовавшись, помимо классической термодинамики, электромагнитной теорией света, вывел следующую формулу:

·

где u ν — плотность энергии излучения,

ν — частота излучения,

T — температура излучающего тела,

f — функция, зависящая только от частоты и температуры. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Первая формула Вина справедлива для всех частот.

В 1896 году Вин, на основе дополнительных предположений, вывел второй закон:

где C 1, C 2 — константы. Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C 1 и C 2. С учётом этого, второй закон Вина можно записать в виде:

где h — постоянная Планка,

k — постоянная Больцмана,

c — скорость света в вакууме.

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Рэлея — Джинса:

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия междувеществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названоультрафиолетовой катастрофой.

Тем не менее закон излучения Рэлея — Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с формулой Рэлея — Джинса при .

Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

нтенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка:

где — мощность излучения на единицу площади излучающей поверхности в единичном интервале частот в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с− 1·м− 2·Гц− 1·ср− 1).

Эквивалентно,

где — мощность излучения на единицу площади излучающей поверхности в единичном интервале длин волн в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с− 1·м− 2·м− 1·ср− 1).

Общая энергия теплового излучения определяется законом Стефана — Больцмана, который гласит:

Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, прямо пропорциональна четвёртой степени температуры тела:

где — мощность на единицу площади излучающей поверхности.

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина:

где — температура в кельвинах, а — длина волны с максимальной интенсивностью в метрах.

 


 

19. Колебания кристаллической решётки

один из основных видов внутренних движений твёрдого тела, при котором составляющие его частицы (атомы или ионы) колеблются около положений равновесия — узлов кристаллической решётки. К. к. р., например, в виде стоячих или бегущих звуковых волн возникают всякий раз, когда на кристалл действует внешняя сила, изменяющаяся со временем. Однако и в отсутствие внешних воздействий в кристалле, находящемся в тепловом равновесии с окружающей средой, устанавливается стационарное состояние колебаний, подобно тому как в газе устанавливается стационарное распределение атомов или молекул по скорости их поступательного движения.

Акустическая и оптическая ветви. Три первые ветви колебаний с σ = 1, 2, 3 называются акустическими. В случае, когда длина волны λ значительно превышает наибольший из периодов пространственной решётки (k — мало), они характеризуются линейным законом дисперсии ω = ck. Это обычные звуковые волны, а с — фазовая скорость их распространения, зависящая от направления распространения и поляризации. Они плоскополяризованы в одном из трёх взаимно перпендикулярных направлений соответственно трём значениям σ = 1, 2, 3 и соответствуют колебаниям кристалла как сплошной среды. В анизотропном кристалле ни одно из этих направлений обычно не совпадает с направлением распространения волны, т. е. с k. Лишь в упругой изотропной среде звуковые волны имеют чисто продольную и чисто поперечную поляризации. Акустические ветви охватывают диапазон частот от нуля до Колебания кристаллической решётки 1013 гц. Однако с уменьшением длины волны закон дисперсии становится более сложным.

Для остальных 3∙ (n— 1) ветвей частоты смещения атомов в процессе колебаний, соответствующих большой длине волны, происходят так, что центр масс отдельной элементарной ячейки покоится. В ионных кристаллах (См. Ионные кристаллы), элементарная ячейка которых состоит из ионов противоположных знаков, движение такого типа можно возбудить переменным электрическим полем, например световой волной, с частотой, лежащей, как правило, в инфракрасной области. Поэтому эти ветви называются оптическими. Своё название акустическая ветвь получила по начальному участку (), начальный участок акустической ветви — обычный звук.


 

21. Пусть на пути сферической монохроматической световой волны, идущей от источника P0, располагается плоский непрозрачный объект с отверстием , размеры которого велики по сравнению с длиной волны (рис.1). В соответствии с

Рис.1.


принципом Гюйгенса-Френеля для нахождения поля в некоторой точке P необходимо рассмотреть интерференцию волн, идущих от вторичных источников, расположенных в прозрачной части объекта . При этом амплитуда и фаза сферических волн, приходящих в точку P, зависят от расстояния от источника P0 до соответствующих участков объекта на поверхности и от расстояния от этих участков до точки P. В общем случае распределение поля U(P) может быть найдено с помощью интегральной формулы Френеля-Кирхгофа [1]

(1)

· где  - длина волны;

· k = 2 / - волновое число;

· - вектор нормали к поверхности объекта;

· dS - элемент площади в плоскости объекта;

· i - мнимая единица;

· A - константа;


интегрирование ведется по открытой поверхности объекта. В этой формуле член, пропорциональный exp(-ikr)/r, описывает сферическую волну, распространяющуюся из точки P0 до некоторого вторичного источника, расположенного на поверхности , член, пропорциональный exp(-iks)/s, - сферическую волну, идущую от вторичного источника до точки наблюдения P, а член описывает изменение амплитуды вторичных волн в зависимости от направления распространения падающей и вторичных волн. Наиболее интересным для рассмотрения является случай, когда характерный линейный размер отверстия b мал по сравнению с расстояниями и от точек P0 и P до объекта. При этом как множитель , так и член 1/rs изменяются при интегрировании по отверстию S незначительно, и основную роль в вычислении дифракционной картины по формуле (1) играет интеграл от быстро осциллирующего члена exp[-ik(r+s)]. Разложение в ряд этого члена (см. например [1, стр. 417]) позволяет существенно упростить формулу (1).

Явления, описываемые в рамках такого приближения, носят название дифракции Френеля, или дифракции в ближней зоне. При r стремящемуся к бесконечности фронт падающей волны можно считать плоским. Если s стремится к бесконечности, то и вторичные волны, распространяющиеся под некоторым углом j к первоначальному направлению, образуют плоский волновой фронт. Дифракционные явления, наблюдаемые при этих условиях, носят название дифракции Фраунгофера, или дифракции в дальней зоне.

Различие между дифракцией Френеля и дифракцией Фраунгофера становится более наглядным, если ввести понятие зон Френеля. Для этого рассмотрим дифракцию на круглом отверстии радиуса R (рис. 2).

Рис.2.

Пусть источник света P0 и точка наблюдения P находятся на оси отверстия на расстояниях r и s соответственно. Выделим в плоскости объекта два вторичных источника: первый, расположенный на оси в точке О, и второй, расположенный на краю отверстия в точке А. Нетрудно показать, что свет, идущий из т. P0 в т. P через вторичный источник О, пройдет путь, равный r+s, а свет, прошедший через вторичный источник А - путь

.

Введя обозначение

получим выражение для разности хода между двумя путями: . Говорят, что радиус отверстия R равен радиусу n-й зоны Френеля Rn, если разность хода , соответствуюшая этому радиусу, составляет n длин полуволн, т.е.

откуда радиус n-й зоны Френеля равен

.

Таким образом, размер отверстия, выраженный в количестве открытых зон Френеля, зависит не только от расстояний r и s, но и от длины волны  источника света. Можно показать, что если число открытых зон Френеля нечетное, то в т. P будет наблюдаться светлое пятно, если же открыто четное число зон Френеля, то в центре картины будет темное пятно. Если объект имеет произвольную форму с характерным размером b (например, длинная шель ширины b), то можно показать, что, если b много меньше радиуса первой зоны Френеля

,

то при рассмотрении явления дифракции можно пользоваться приближением Фраунгофера. Если размер объекта составляет одну или несколько зон Френеля, то в этом случае справедливо приближение Френеля. Если же размер объекта велик и составляет десятки и сотни зон Френеля, то явления дифракции на таком объекте практически не проявляются и в этом случае работает приближение гоеметрической оптики.

Настоящая задача физического практикума посвящена экспериментальному изучению явления дифракции, описываемой в рамках приближения Фраунгофера.

Дифракция Фраунгофера — случай дифракции, при котором дифракционная картина наблюдается на значительном расстоянии от отверстия или преграды.

Дифра́ кция Френе́ ля — дифракционная картина, которая наблюдается на небольшом расстоянии от препятствия, по условиям, когда основной вклад в интерференционную картину дают границы экрана.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.