Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Класс трафика Характеристика






А Постоянная битовая скорость — Constant Bit Rate, CBR.

Требуются временные соотношения между передаваемыми

и принимаемыми данными.

С установлением соединения.

Примеры: голосовой трафик, трафик телевизионного изображения

В Переменная битовая скорость — Variable Bit Rate, VBR.

Требуются временные соотношения между передаваемыми

и принимаемыми данными.

С установлением соединения.

Примеры: компрессированный голос, компрессированное видеоизображение

С Переменная битовая скорость — Variable Bit Rate, VBR.

He требуются временные соотношения между передаваемыми

и принимаемыми данными.

С установлением соединения.

Примеры: трафик компьютерных сетей, в которых конечные узлы работают

по протоколам с установлением соединений: frame relay, X.25, LLC2, TCP

D Переменная битовая скорость — Variable Bit Rate, VBR.

He требуются временные соотношения между передаваемыми и принимаемыми

данными.

Без установления соединения.

Примеры: трафик компьютерных сетей, в которых конечные узлы работают по

протоколам без установления соединений (IP, Ethernet DNS, SNMP)

_X___________________ Тип трафика и его параметры определяются пользователем ______________________

Очевидно, что только качественных характеристик, задаваемых классом трафи­ка, для описания требуемых услуг оказывается недостаточно. В технологии ATM для каждого класса трафика определен набор количественных параметров, кото­рые приложение должно задать. Например, для трафика класса А необходимо ука­зать постоянную скорость, с которой приложение будет посылать данные в сеть, а для трафика класса В — максимально возможную скорость, среднюю скорость и максимально возможную пульсацию. Для голосового трафика можно не только указать на важность синхронизации между передатчиком и приемником, но и ко­личественно задать верхние границы задержки и вариации задержки ячеек.

В технологии ATM поддерживается следующий набор основных количествен­ных параметров:

• Peak Cell Rate (PCR) — максимальная скорость передачи данных;

• Sustained Cell Rate (SCR) — средняя скорость передачи данных;

• Minimum Cell Rate (MCR) — минимальная скорость передачи данных;

• Maximum Burst Size (MBS) — максимальный размер пульсации;

6.4. Компьютерные глобальные сети с коммутацией пакетов 547

• Cell Loss Ratio (CLR) — доля потерянных ячеек;

«Cell Transfer Delay (CTD) — задержка передачи ячеек;

» Cell Delay Variation (CDV) — вариация задержки ячеек.

Параметры скорости измеряются в ячейках в секунду, максимальный размер пульсации — в ячейках, а временные параметры — в секундах. Максимальный раз­мер пульсации задает количество ячеек, которое приложение может передать с максимальной скоростью PCR, если задана средняя скорость. Доля потерянных ячеек является отношением потерянных ячеек к общему количеству отправленных ячеек по данному виртуальному соединению. Так как виртуальные соединения являются дуплексными, то для каждого направления соединения могут быть зада­ны разные значения параметров.

В технологии ATM принят не совсем традиционный подход к трактовке терми­на «качество обслуживания» — QoS. Обычно качество обслуживания трафика характеризуется параметрами пропускной способности (здесь это RCR, SCR, MCR, MBS), параметрами задержек пакетов (CTD и CDV), а также параметрами надеж­ности передачи пакетов (CLR). В ATM характеристики пропускной способности называют параметрами трафика и не включают их в число параметров качества обслуживания QoS, хотя по существу они таковыми являются. Параметрами QoS в ATM являются только параметры CTD, CDV и CLR. Сеть старается обеспечить такой уровень услуг, чтобы поддерживались требуемые значения и параметров тра­фика, и задержек ячеек, и доли потерянных ячеек.

Соглашение между приложением и сетью ATM называется трафик-контрак­том. Основным его отличием от соглашений, применяемых в сетях frame relay, является выбор одного из нескольких определенных классов трафика, для которо­го наряду с параметрами пропускной способности трафика могут указываться па­раметры задержек ячеек, а также параметр надежности доставки ячеек. В сети frame relay класс трафика один, и он характеризуется только параметрами пропускной способности.

Необходимо подчеркнуть, что задание только параметров трафика (вместе с параметрами QoS) часто не полностью характеризует требуемую услугу, поэтому задание класса трафика полезно для уточнения нужного характера обслуживания данного соединения сетью.

В некоторых случаях специфика приложения такова, что ее трафик не может быть отнесен к одному из четырех стандартных классов. Поэтому для этого случая введен еще один класс X, который не имеет никаких дополнительных описаний, а полностью определяется теми количественными параметрами трафика и QoS, ко­торые оговариваются в трафик-контракте.

Если для приложения не критично поддержание параметров пропускной способ­ности и QoS, то оно может отказаться от задания этих параметров, указав признак «Best Effort» в запросе на установление соединения. Такой тип трафика получил название трафика с неопределенной битовой скоростью — Unspecified Bit Rate, UBR. После заключения трафик-контракта, который относится к определенному вир­туальному соединению, в сети ATM работает несколько протоколов и служб, обеспе­чивающих нужное качество обслуживания. Для трафика UBR сеть выделяет ресурсы «по возможности», то есть те, которые в данный момент свободны от использова­ния виртуальными соединениями, заказавшими определенные параметры качества обслуживания.

548 Глава 6 • Глобальные сети

Технология ATM изначально разрабатывалась для поддержки как постоянных, так и коммутируемых виртуальных каналов (в отличие от технологии frame relay, долгое время не поддерживающей коммутируемые виртуальные каналы). Автома­тическое заключение трафик-контракта при установлении коммутируемого вирту­ального соединения представляет собой весьма непростую задачу, так как коммутаторам ATM необходимо определить, смогут ли они в дальнейшем обеспе­чить передачу трафика данного виртуального канала наряду с трафиком других виртуальных каналов таким образом, чтобы выполнялись требования качества об­служивания каждого канала.

Стек протоколов ATM

Стек протоколов ATM показан на рис 6.30, а распределение протоколов по конеч­ным узлам и коммутаторам ATM — на рис. 6.31.

Стек протоколов ATM соответствует нижним уровням семиуровневой модели ISO/OSI и включает уровень адаптации ATM, собственно уровень ATM и физи­ческий уровень. Прямого соответствия между уровнями протоколов технологии ATM и уровнями модели OSI нет.

6.4. Компьютерные глобальные сети с коммутацией пакетов 549

Уровень адаптации ML

Уровень адаптации (ATM Adaptation Layer, AAL) представляет собой набор прото­колов AAL1-AAL5, которые преобразуют сообщения протоколов верхних уровней сети ATM в ячейки ATM нужного формата. Функции этих уровней достаточно условно соответствуют функциям транспортного уровня модели OSI, например функциям протоколов TCP или UDP. Протоколы AAL при передаче пользователь­ского трафика работают только в конечных узлах сети (см. рис. 6.31), как и транс­портные протоколы большинства технологий.

Каждый протокол уровня AAL обрабатывает пользовательский трафик опреде­ленного класса. На начальных этапах стандартизации каждому классу трафика соответствовал свой протокол AAL, который принимал в конечном узле пакеты от протокола верхнего уровня и заказывал с помощью соответствующего протокола нужные параметры трафика и качества обслуживания для данного виртуального канала. При развитии стандартов ATM такое однозначное соответствие между клас­сами трафика и протоколами уровня AAL исчезло, и сегодня разрешается исполь­зовать для одного и того же класса трафика различные протоколы уровня AAL.

Уровень адаптации состоит из нескольких подуровней. Нижний подуровень AAL называется подуровнем сегментации и реассемблирования (Segmentation And Reassembly, SAR). Эта часть не зависит от типа протокола AAL (и, соответственно, от класса передаваемого трафика) и занимается разбиением (сегментацией) сооб­щения, принимаемого AAL от протокола верхнего уровня, на ячейки ATM, снаб­жением их соответствующим заголовком и передачей уровню ATM для отправки в сеть.

Верхний подуровень AAL называется подуровнем конвергенции — Convergence Sublayer, CS. Этот подуровень зависит от класса передаваемого трафика. Протокол подуровня конвергенции решает такие задачи, как, например, обеспечение времен­ной синхронизации между передающим и принимающим узлами (для трафика, требующего такой синхронизации), контролем и возможным восстановлением би­товых ошибок в пользовательской информации, контролем целостности передава­емого пакета компьютерного протокола (Х.25, frame relay).

Протоколы AAL для выполнения своей работы используют служебную инфор­мацию, размещаемую в заголовках уровня AAL. После приема ячеек, пришедших по виртуальному каналу, подуровень SAR протокола AAL собирает посланное по сети исходное сообщение (которое в общем случае было разбито на несколько яче­ек ATM) с помощью заголовков AAL, которые для коммутаторов ATM являются прозрачными, так как помещаются в 48-битном поле данных ячейки, как и полага­ется протоколу более высокого уровня. После сборки исходного сообщения прото­кол AAL проверяет служебные поля заголовка и концевика кадра AAL и на их основании принимает решение о корректности полученной информации.

Ни один из протоколов AAL при передаче пользовательских данных конечных узлов не занимается восстановлением потерянных или искаженных данных. Мак­симум, что делает протокол AAL, — это уведомляет конечный узел о таком собы­тии. Так сделано для ускорения работы коммутаторов сети ATM в расчете на то, что случаи потерь или искажения данных будут редкими. Восстановление поте­рянных данных (или игнорирование этого события) отводится протоколам верх­них уровней, не входящим в стек протоколов технологии ATM.

550 Глава 6 • Глобальные сети

Протокол AAL1 обычно обслуживает трафик класса А с постоянной битовой скоростью (Constant Bit Rate, CBR), который характерен, например, для цифрово­го видео и цифровой речи и чувствителен к временным задержкам. Этот трафик передается в сетях ATM таким образом, чтобы эмулировать обычные выделенные цифровые линии. Заголовок AAL1 занимает в поле данных ячейки ATM 1 или 2 байта, оставляя для передачи пользовательских данных соответственно 47 или 46 байт. В заголовке один байт отводится для нумерации ячеек, чтобы приемная сторона могла судить о том, все ли посланные ячейки дошли до нее или нет. При отправке голосового трафика временная отметка каждого замера известна, так как они следуют друг за другом с интервалом в 125 мкс, поэтому при потере ячейки можно скорректировать временную привязку байт следующей ячейки, сдвинув ее на 125x46 мкс. Потеря нескольких байт замеров голоса не так страшна, так как на приемной стороне воспроизводящее оборудование сглаживает сигнал. В задачи протокола AAL1 входит сглаживание неравномерности поступления ячеек данных в узел назначения.

Протокол AAL2 был разработан для передачи трафика класса В, но при разви­тии стандартов он был исключен из стека протоколов ATM, и сегодня трафик класса В передается с помощью протокола AAL1, AAL3/4 или AAL5.

Протокол AAL3/4 обрабатывает пульсирующий трафик — обычно характерный для трафика локальных сетей — с переменной битовой скоростью (Variable Bit Rate, VBR). Этот трафик обрабатывается так, чтобы не допустить потерь ячеек, но ячейки могут задерживаться коммутатором. Протокол AAL3/4 выполняет слож­ную процедуру контроля ошибок при передаче ячеек, нумеруя каждую составляю­щую часть исходного сообщения и снабжая каждую ячейку контрольной суммой. Правда, при искажениях или потерях ячеек уровень не занимается их восстановле­нием, а просто отбрасывает все сообщение — то есть все оставшиеся ячейки, так как для компьютерного трафика или компрессированного голоса потеря части данных является фатальной ошибкой. Протокол AAL3/4 образовался в результате слияния протоколов AAL3 и AAL4, которые обеспечивали поддержку трафика компьютерных сетей соответственно с установлением соединения и без установления соединения. Однако ввиду большой близости используемых форматов служебных заголовков и логики работы протоколы AAL3 и AAL4 были впоследствии объединены.

Протокол AAL5 является упрощенным вариантом протокола AAL4 и работает быстрее, так как вычисляет контрольную сумму не для каждой ячейки сообщения, а для всего исходного сообщения в целом и помещает ее в последнюю ячейку сообще­ния. Первоначально протокол AAL5 разрабатывался для передачи кадров сетей frame relay, но теперь он чаще всего используется для передачи любого компьютерного трафика. Протокол AAL5 может поддерживать различные параметры качества об­служивания, кроме тех, которые связаны с синхронизацией передающей и принима­ющей сторон. Поэтому он обычно используется для поддержки всех классов трафика, относящегося к передаче компьютерных данных, то есть классов С и D. Некоторые производители оборудования с помощью протокола AAL5 обслуживают трафик CBR, оставляя задачу синхронизации трафика протоколам верхнего уровня.

Протокол AAL5 работает не только в конечных узлах, но и в коммутаторах сети ATM. Однако там он выполняет служебные функции, не связанные с передачей пользовательских данных. В коммутаторах ATM протокол AAL5 поддерживает служебные протоколы более высоких уровней, занимающиеся установлением ком­мутируемых виртуальных соединений.

6.4. Компьютерные глобальные сети с коммутацией пакетов 551

Существует определенный интерфейс между приложением, которому требует­ся передать трафик через сеть ATM, и уровнем адаптации AAL. С помощью этого интерфейса приложение (протокол компьютерной сети, модуль оцифровывания голоса) заказывает требуемую услугу, определяя тип трафика, его параметры, а также параметры QoS. Технология ATM допускает два варианта определения па­раметров QoS: первый — непосредственное задание их каждым приложением, вто­рой — назначение их по умолчанию в зависимости от типа трафика. Последний способ упрощает задачу разработчика приложения, так как в этом случае выбор максимальных значений задержки доставки ячеек и вариации задержек перекла­дывается на плечи администратора сети.

Самостоятельно обеспечить требуемые параметры трафика и QoS протоколы AAL не могут. Для выполнения соглашений трафик-контракта требуется согласо­ванная работа коммутаторов сети вдоль всего виртуального соединения. Эта рабо­та выполняется протоколом ATM, обеспечивающим передачу ячеек различных виртуальных соединений с заданным уровнем качества обслуживания.

Протокол ATM

Протокол ATM занимает в стеке протоколов ATM примерно то же место, что про­токол IP в стеке TCP/IP или протокол LAP-F в стеке протоколов технологии frame relay. Протокол ATM занимается передачей ячеек через коммутаторы при установ­ленном и настроенном виртуальном соединении, то есть на основании готовых таблиц коммутации портов. Протокол ATM выполняет коммутацию по номеру виртуального соединения, который в технологии ATM разбит на две части — иден­тификатор виртуального пути (Virtual Path Identifier, VPI) и идентификатор вир­туального канала (Virtual Channel Identifier, VCI). Кроме этой основной задачи протокол ATM выполняет ряд функций по контролю за соблюдением трафик-контракта со стороны пользователя сети, маркировке ячеек-нарушителей, отбра­сыванию ячеек-нарушителей при перегрузке сети, а также управлению потоком ячеек для повышения производительности сети (естественно, при соблюдении ус­ловий трафик-контракта для всех виртуальных соединений).

Протокол ATM работает с ячейками следующего формата, представленного на • рис. 6.32.

Поле Управление потоком (Generic Flow Control) используется только при взаи­модействии конечного узла и первого коммутатора сети. В настоящее время его точные функции не определены.

Поля Идентификатор виртуального пути (VitualPath Identifier, VPI) и Иденти­фикатор виртуального канала (Vitual Channel Identifier, VCI) занимают соответ­ственно 1 и 2 байта. Эти поля задают номер виртуального соединения, разделенный на старшую (VPI) и младшую (VCI) части.

Поле Идентификатор типа данных (Payload Type Identifier, PTI) состоит из 3-х бит и задает тип данных, переносимых ячейкой, — пользовательские или уп­равляющие (например, управляющие установлением виртуального соединения). Кроме того, один бит этого поля используется для указания перегрузки в сети — он называется Explicit Congestion Forward Identifier, EFCI — и играет ту же роль, что бит FECN в технологии frame relay, то есть передает информацию о перегрузке по направлению потока данных.

Поле Приоритет потери кадра (Cell Loss Priority, CLP) играет в данной техноло­гии ту же роль, что и поле DE в технологии frame relay — в нем коммутаторы ATM отмечают ячейки, которые нарушают соглашения о параметрах качества обслужи-

552 Глава 6 • Глобальные сети

вания, чтобы удалить их при перегрузках сети. Таким образом, ячейки с CLP=0 являются для сети высокоприоритетными, а ячейки с CLP=1 — низкоприоритет­ными.

Поле Управление ошибками в заголовке (Header Error Control, НЕС) содержит контрольную сумму, вычисленную для заголовка ячейки. Контрольная сумма вы­числяется с помощью техники корректирующих кодов Хэмминга, поэтому она позволяет не только обнаруживать ошибки, но и исправлять все одиночные ошиб­ки, а также некоторые двойные. Поле НЕС обеспечивает не только обнаружение и исправление ошибок в заголовке, но и нахождение границы начала кадра в потоке байтов кадров SDH, которые являются предпочтительным физическим уровнем технологии ATM, или же в потоке бит физического уровня, основанного на ячей­ках. Указателей, позволяющих в поле данных кадра STS-n (STM-n) технологии SONET/SDH обнаруживать границы ячеек ATM (подобных тем указателям, кото­рые используются для определения, например, границ виртуальных контейнеров подканалов Т1/Е1), не существует. Поэтому коммутатор ATM вычисляет конт­рольную сумму для последовательности из 5 байт, находящихся в поле данных кадра STM-n, и, если вычисленная контрольная сумма говорит о корректности заголовка ячейки ATM, первый байт становится границей ячейки. Если же это не так, то происходит сдвиг на один байт и операция продолжается. Таким образом, технология ATM выделяет асинхронный поток ячеек ATM в синхронных кадрах SDH или потоке бит физического уровня, основанного на ячейках.

Рассмотрим методы коммутации ячеек ATM на основе пары чисел VPI/VCI. Коммутаторы ATM могут работать в двух режимах — коммутации виртуального пути и коммутации виртуального канала. В первом режиме коммутатор выполня­ет продвижение ячейки только на основании значения поля VPI, а значение поля VCI он игнорирует. Обычно так работают магистральные коммутаторы территори­альных сетей. Они доставляют ячейки из одной сети пользователя в другую на основании только старшей части номера виртуального канала, что соответствует

6.4. Компьютерные глобальные сети с коммутацией пакетов 553

идее агрегирования адресов. В результате один виртуальный путь соответствует целому набору виртуальных каналов, коммутируемых как единое целое.

После доставки ячейки в локальную сеть ATM ее коммутаторы начинают ком­мутировать ячейки с учетом как VPI, так и VCI, но при этом им хватает для ком­мутации только младшей части номера виртуального соединения, так что фактически они работают с VCI, оставляя VPI без изменения. Последний режим называется режимом коммутации виртуального канала.

Для создания коммутируемого виртуального канала в технологии ATM исполь­зуются протоколы, не показанные на рис. 6.30. Подход здесь аналогичен подходу в сети ISDN — для установления соединения разработан отдельный протокол Q.2931, который весьма условно можно отнести к сетевому уровню. Этот протокол во многом похож на протоколы Q.931 и Q.933 (даже номером), но в него внесены, естественно, изменения, связанные с наличием нескольких классов трафика и дополнительных параметров качества обслуживания. Протокол Q.2931 опирается на достаточно слож­ный протокол канального уровня SSCOP, который обеспечивает надежную передачу пакетов Q.2931 в своих кадрах. В свою очередь, протокол SSCOP работает поверх протокола AAL5, который необходим для разбиения кадров SSCOP на ячейки ATM и сборки этих ячеек в кадры при доставке кадра SSCOP в коммутатор назначения.

ПРИМЕЧАНИЕ Протокол Q.2931 появился в стеке протоколов технологии ATM после принятия версии интерфейса UNI 3.1, а до этого в версии UNI 3.0 вместо него использовался протокол Q.93B. Из-за несовместимости прото­колов Q.2931 и Q.93B версии пользовательского интерфейса UNI 3.0 и UNI 3.1 также несовмеаимы. Версия UNI 4.0 обратно совместима с UNI 3.1, так как основана на тех же служебных протоколах, что и версия UNI 3.1. ____________________________________________________________________________

Виртуальные соединения, образованные с помощью протокола Q.2931, бывают симплексными (однонаправленными) и дуплексными.

Протокол Q.2931 позволяет также устанавливать виртуальные соединения типа «один-к-одному» (point-to-point) и «один-ко-многим» (point-to-multipoint). Первый случай поддерживается во всех технологиях, основанных на виртуальных каналах, а второй характерен для технологии ATM и является аналогом мультивещания, но, с одним ведущим вещающим узлом. При установлении соединения «один-ко-мно­гим» ведущим считается узел, который является инициатором этого соединения. Сначала этот узел устанавливает виртуальное соединение всего с одним узлом, а затем добавляет к соединению с помощью специального вызова по одному новому члену. Ведущий узел становится вершиной дерева соединения, а остальные узлы — листьями этого дерева. Сообщения, которые посылает ведущий узел, принимают все листья соединения, но сообщения, которые посылает какой-либо лист (если соединение дуплексное), принимает только ведущий узел.

Пакеты протокола Q-2931, предназначенные для установления коммутируемо­го виртуального канала, имеют те же названия и назначение, что и пакеты протоко­ла Q.933, рассмотренные выше при изучении технологии frame relay, но структура их полей, естественно, другая.

Адресом конечного узла в коммутаторах ATM является 20-байтный адрес. Этот адрес может иметь различный формат, описываемый стандартом ISO 7498. При работе в публичных сетях используется адрес стандарта Е.164, при этом 1 байт составляет AFI, 8 байт занимает IDI — основная часть адреса Е.164 (15 цифр теле­фонного номера), а остальные 11 байт части DSP (Domain Specific Part) распреде­ляются следующим образом.

554 Глава 6 • Глобальные сети

в 4 байта занимает поле старшей части DSP — High-Order Domain Spesific Part (HO-DSP), имеющее гибкий формат и, в сущности, представляющее собой но­мер сети ATM, который может делиться на части для агрегированной маршру­тизации по протоколу PNNI, подобной той, которая используется в технике CIDR для сетей IP.

в 6 байт занимает поле идентификатора конечной системы — End System Identifi­er (ESI), которое имеет смысл МАС-адреса узла ATM, причем формат его также соответствует формату МАС-адресов IEEE.

• 1 байт составляет поле селектора, которое не используется при установлении

виртуального канала, а имеет для узла локальное назначение.

При работе в частных сетях ATM обычно применяется формат адреса, соответ­ствующий домену международных организаций, причем в качестве международ­ной организации выступает ATM Forum. В этом случае поле IDI занимает 2 байта, которые содержат код ATM Forum, данный ISO, а структура остальной части DSP соответствует описанной выше за исключением того, что поле HO-DSP занимает не 4, а 10 байт.

Адрес ESI присваивается конечному узлу на предприятии-изготовителе в соот­ветствии с правилами IEEE, то есть 3 первых байта содержат код предприятия, а остальные три байта — порядковый номер, за уникальность которого отвечает дан­ное предприятие.

Конечный узел при подключении к коммутатору ATM выполняет так называе­мую процедуру регистрации. При этом конечный узел сообщает коммутатору свой ESI-адрес, а коммутатор сообщает конечному узлу старшую часть адреса, то есть номер сети, в которой работает узел.

Кроме адресной части пакет CALL SETUP протокола Q.2931, с помощью кото­рого конечный узел запрашивает установление виртуального соединения, вклю­чает также части, описывающие параметры трафика и требования QoS. При поступлении такого пакета коммутатор должен проанализировать эти параметры и решить, достаточно ли у него свободных ресурсов производительности для об­служивания нового виртуального соединения. Если да, то новое виртуальное со­единение принимается и коммутатор передает пакет CALL SETUP дальше в соответствии с адресом назначения и таблицей маршрутизации, а если нет, то за­прос отвергается.

Категории услуг протокола ATM и управление трафиком

Для поддержания требуемого качества обслуживания различных виртуальных со­единений и рационального использования ресурсов в сети на уровне протокола ATM реализовано несколько служб, предоставляющих услуги различных катего­рий (service categories) по обслуживанию пользовательского трафика. Эти службы являются внутренними службами сети ATM, они предназначены для поддержания пользовательского трафика различных классов совместно с протоколами AAL. Но в отличие от протоколов AAL, которые работают в конечных узлах сети, данные службы распределены по всем коммутаторам сети. Услуги этих служб разбиты на категории, которые в общем соответствуют классам трафика, поступающим на вход уровня AAL конечного узла. Услуги уровня ATM заказываются конечным узлом через интерфейс UNI с помощью протокола Q.2931 при установлении виртуально-

6.4. Компьютерные глобальные сети с коммутацией пакетов 555

го соединения. Как и при обращении к уровню AAL, при заказе услуги необходимо указать категорию услуги, а также параметры трафика и параметры QoS. Эти па­раметры берутся из аналогичных параметров уровня AAL или же определяются по умолчанию в зависимости от категории услуги.

Всего на уровне протокола ATM определено пять категорий услуг, которые под­держиваются одноименными службами:

• CBR — услуги для трафика с постоянной битовой скоростью;

• rtVBR — услуги для трафика с переменной битовой скоростью, требующего соблюдения средней скорости передачи данных и синхронизации источника и приемника;

• nrtVBR — услуги для трафика с переменной битовой скоростью, требующего соблюдения средней скорости передачи данных и не требующего синхронизации источника и приемника;

в ABR — услуги для трафика с переменной битовой скоростью, требующего соблюдения некоторой минимальной скорости передачи данных и не требующего синхронизации источника и приемника;

• UBR — услуги для трафика, не предъявляющего требований к скорости передачи данных и синхронизации источника и приемника.

Названия большинства категорий услуг совпадают с названием типов пользо­вательского трафика, для обслуживания которого они разработаны, но необходимо понимать, что сами службы уровня ATM и их услуги — это внутренние механизмы сети ATM, которые экранируются от приложения уровнем AAL.

Услуги категории CBR предназначены для поддержания трафика синхронных приложений — голосового, эмуляции цифровых выделенных каналов и т. п. Когда приложение устанавливает соединение категории CBR, оно заказывает пиковую скорость трафика ячеек PCR, являющуюся максимальной скоростью, которую мо­жет поддерживать соединение без риска потерять ячейку, а также параметры QoS: величины максимальной задержки ячеек CTD, вариации задержки ячеек CDV и максимальной доли потерянных ячеек CLR.

Затем данные передаются по этому соединению с запрошенной скоростью — не с большей и, в большинстве случаев, не меньшей, хотя уменьшение скорости при­ложением возможно, например, при передаче компрессированного голоса с помо­щью услуги категории CBR. Любые ячейки, передаваемые станцией с большей скоростью, контролируются первым коммутатором сети и помечаются признаком CLP=1. При перегрузках сети они могут просто отбрасываться сетью. Ячейки, ко­торые запаздывают и не укладываются в интервал, оговоренный параметром ва­риации задержки CDV, также считаются мало значащими для приложения и отмечаются признаком низкого приоритета CLP=1.

Для соединений CBR нет ограничений на некоторую дискретность заказа ско­рости PCR, как, например, в каналах Т1/Е1, где скорость должна быть кратна 64 Кбит/с.

По сравнению со службой CBR, службы VBR требуют более сложной процеду­ры заказа соединения между сетью и приложением. В дополнение к пиковой ско­рости PCR приложение VBR заказывает еще и два других параметра: длительно поддерживаемую скорость — SCR, которая представляет собой среднюю скорость передачи данных, разрешенную приложению, а также максимальный размер пуль-

556 Глава 6 • Глобальные сети

сации — MBS. Максимальный размер пульсации измеряется в количестве ячеек ATM. Пользователь может превышать скорость вплоть до величины PCR, но толь­ко на короткие периоды времени, в течение которых передается объем данных, не превышающий MBS. Этот период времени называется Burst Tolerance, ВТ — терпи­мость к пульсации. Сеть вычисляет этот период как производный от трех заданных значений PCR, SCR и MBS.

Если скорость PCR наблюдается в течение периода времени, большего чем ВТ, то ячейки помечаются как нарушители — устанавливается признак CLP=1.

Для услуг категории rtVBR задаются и контролируются те же параметры QoS, что и для услуг категории CBR, а услуги категории nrtVBR ограничиваются под­держанием параметров трафика. Сеть также поддерживает для обеих категорий услуг VBR определенный максимальный уровень доли потерянных ячеек CLR, который либо задается явно при установлении соединения, либо назначается по умолчанию в зависимости от класса трафика.

Для контроля параметров трафика и QoS в технологии ATM применяется так называемый обобщенный алгоритм контроля скорости ячеек — Generic Cell Rate Algorithm, который может проверять соблюдение пользователем и сетью таких параметров, как PCR, CDV, SCR, ВТ, CTD и CDV. Он работает по модифициро­ванному алгоритму «дырявого ведра», применяемому в технологии frame relay.

Для многих приложений, которые могут быть чрезвычайно «взрывными» в от­ношении интенсивности трафика, невозможно точно предсказать параметры трафи­ка, оговариваемые при установлении соединения. Например, обработка транзакций или трафик двух взаимодействующих локальных сетей непредсказуемы по своей природе — изменения интенсивности трафика слишком велики, чтобы заключить с сетью какое-либо разумное соглашение.

В отличие от CBR и обеих служб VBR, служба UBR не поддерживает ни пара­метры трафика, ни параметры качества обслуживания. Служба UBR предлагает только доставку «по возможности» без каких-либо гарантий. Разработанная спе­циально для обеспечения возможности превышения полосы пропускания, служба UBR представляет собой частичное решение для тех непредсказуемых «взрывных» приложений, которые не готовы согласиться с фиксацией параметров трафика.

Главными недостатками услуг UBR являются отсутствие управления потоком данных и неспособность принимать во внимание другие типы трафика. Несмотря на перегрузку сети, соединения UBR будут продолжать передачу данных. Комму­таторы сети могут буферизовать некоторые ячейки поступающего трафика, но в некоторый момент буферы переполняются, и ячейки теряются. А так как для со­единений UBR не оговаривается никаких параметров трафика и QoS, то их ячейки отбрасываются в первую очередь.

Служба ABR подобно службе UBR предоставляет возможность превышения полосы пропускания, но благодаря технике управления трафиком при перегрузке сети она дает некоторые гарантии сохранности ячеек. ABR — это первый тип служб уровня ATM, который действительно обеспечивает надежный транспорт для пуль­сирующего трафика за счет того, что может находить неиспользуемые интервалы в общем трафике сети и заполнять их своими ячейками, если другим категориям служб эти интервалы не нужны.

Как и в службах CBR и VBR, при установлении соединения категории ABR оговаривается значение пиковой скорости PCR. Однако соглашение о пределах изменения задержки передачи ячеек или о параметрах пульсации не заключается.

6.4. Компьютерные глобальные сети с коммутацией пакетов 557

Вместо этого сеть и конечный узел заключают соглашение о требуемой минимальной скорости передачи MCR. Это гарантирует приложению, работающему в конечном узле, небольшую пропускную способность, обычно минимально необходимую для того, чтобы приложение работало. Конечный узел соглашается не передавать дан­ные со скоростью, выше пиковой, то есть PCR, а сеть соглашается всегда обеспечи­вать минимальную скорость передачи ячеек MCR.

Если при установлении соединения ABR не задаются значения максимальной и минимальной скорости, то по умолчанию считается, что PCR совпадает со скорос­тью линии доступа станции к сети, a MCR считается равной нулю.

Трафик соединения категории ABR получает гарантированное качество услуг в отношении доли потерянных ячеек и пропускной способности. Что касается задер­жек передачи ячеек, то хотя сеть и старается свести их к минимуму, но гарантий по этому параметру не дает. Следовательно, служба ABR не предназначена для при­ложений реального времени, а предназначена для приложений, в которых поток данных не очень чувствителен к задержкам в передаче.

При передаче трафика CBR, VBR и UBR явное управление перегрузками в сети отсутствует. Вместо этого используется механизм отбрасывания ячеек-нару­шителей, а узлы, пользующиеся услугами CBR и VBR, стараются не нарушать условия контракта под угрозой потери ячеек, поэтому они обычно не пользуются дополнительной пропускной способностью, даже если она в данный момент дос­тупна в сети.

Служба ABR позволяет воспользоваться резервами пропускной способности сети, так как сообщает конечному узлу о наличии в данный момент избыточной пропускной способности с помощью механизма обратной связи. Этот же механизм может помочь службе ABR снизить скорость передачи данных конечным узлом в сеть (вплоть до минимального значения MCR), если сеть испытывает перегрузку.

Узел, пользующийся услугами ABR, должен периодически посылать в сеть на­ряду с ячейками данных специальные служебные ячейки управления ресурсами — Resource Management, RM. Ячейки RM, которые узел отправляет вдоль потока данных, называются прямыми ячейками RM — Forward Recource Management • (FRM), а ячейки, которые идут в обратном по отношению к потоку данных на­правлении, называются обратными ячейками RM — Backward Recource Management (BRM).

Существует несколько петель обратной связи. Самая простая петля обратной связи — между конечными станциями. При ее наличии коммутатор сети извещает конечную станцию о перегрузке с помощью специального флага в поле прямого управления перегрузками (флаг EFCI) ячейки данных, переносимой протоко­лом ATM. Затем конечная станция посылает через сеть сообщение, содержащееся в специальной ячейке управления BRM исходной станции, говоря ей о необходи­мости уменьшить скорость посылки ячеек в сеть.

В этом способе конечная станция несет основную ответственность за управле­ние потоком, а коммутаторы играют пассивную роль в петле обратной связи, толь­ко уведомляя станцию-отправитель о перегрузке.

Такой простой способ имеет несколько очевидных недостатков. Конечная стан­ция не узнает из сообщения BRM, на какую величину нужно уменьшить скорость передачи данных в сеть. Поэтому она просто понизит скорость до минимальной величины MCR, хотя, возможно, это и не обязательно. Кроме того, при большой протяженности сети коммутаторы должны продолжать буферизовать данные все

558 Глава 6 • Глобальные сети

время, пока уведомление о перегрузке будет путешествовать по сети, а для гло­бальных сетей это время может быть достаточно большим, и буферы могут пере­полниться, так что требуемый эффект достигнут не будет.

Разработаны и более сложные схемы управления потоком, в которых коммута­торы играют более активную роль, а узел-отправитель узнает более точно о воз­можной в данный момент скорости отправки данных в сеть.

В первой схеме узел-источник посылает в ячейке FRM явное значение скорости передачи данных в сеть, которую он хотел бы поддерживать в данное время. Каж­дый коммутатор, через который проходит по виртуальному пути это сообщение, может уменьшить запрашиваемую скорость до некоторой величины, которую он может поддерживать в соответствии с имеющимися у него свободными ресурсами (или оставить запрашиваемую скорость без изменения). Узел назначения, получив ячейку FRM, превращает ее в ячейку BRM и отправляет в обратном направлении, причем он тоже может уменьшить запрашиваемую скорость. Получив ответ в ячейке BRM, узел-источник точно узнает, какая скорость отправки ячеек в сеть для него в данный момент доступна.

Во второй схеме каждый коммутатор сети может работать как узел-источник и узел назначения. Как узел-источник он может сам генерировать ячейки FRM и отправлять их по имеющимся виртуальным каналам. Как узел назначения он может отправлять на основе получаемых ячеек FRM ячейки BRM в обратном направле­нии. Такая схема является более быстродействующей и полезной в протяженных территориальных сетях.

Как видно из описания, служба ABR предназначена не только для прямого поддержания требований к обслуживанию конкретного виртуального соединения, но и для более рационального распределения ресурсов сети между ее абонентами, что в конечном итоге также приводит к повышению качества обслуживания всех абонентов сети.

Коммутаторы сети ATM используют различные механизмы для поддержания требуемого качества услуг. Кроме описанных в стандартах ITU-T и ATM Forum механизмов заключения соглашения на основе параметров трафика и параметров QoS, а затем отбрасывания ячеек, не удовлетворяющих условиям соглашения, прак­тически все производители оборудования ATM реализуют в своих коммутаторах несколько очередей ячеек, обслуживаемых с различными приоритетами.

Стратегия приоритетного обслуживания трафика основана на категориях услуг каждого виртуального соединения. До принятия спецификации ABR в большин­стве коммутаторов ATM была реализована простая одноуровневая схема обслужи­вания, которая давала трафику CBR первый приоритет, трафику VBR второй, а трафику UBR — третий. При такой схеме комбинация CBR и VBR может потенци­ально заморозить трафик, обслуживаемый другим классом служб. Такая схема не будет правильно работать с трафиком ABR, так как не обеспечит его требования к минимальной скорости передачи ячеек. Для обеспечения этого требования должна быть выделена некоторая гарантированная полоса пропускания.

Чтобы поддерживать службу ABR, коммутаторы ATM должны реализовать двухуровневую схему обслуживания, которая бы удовлетворяла требованиям CBR, VBR и ABR. По этой схеме коммутатор предоставляет некоторую часть своей про­пускной способности каждому классу служб. Трафик CBR получает часть пропуск­ной способности, необходимую для поддержания пиковой скорости PCR, трафик VBR получает часть пропускной способности, необходимую для поддержания сред-

6.4. Компьютерные глобальные сети с коммутацией пакетов 559

ней скорости SCR, a трафик ABR получает часть пропускной способности, доста­точную для обеспечения требования минимальной скорости ячеек MCR. Это га­рантирует, что каждое соединение может работать без потерь ячеек и не будет доставлять ячейки ABR за счет трафика CBR или VBR. На втором уровне этого алгоритма трафик CBR и VBR может забрать всю оставшуюся пропускную спо­собность сети, если это необходимо, так как соединения ABR уже получили свою минимальную пропускную способность, которая им гарантировалась.

Передача трафика IP через сети ATM

Технология ATM привлекает к себе общее внимание, так как претендует на роль всеобщего и очень гибкого транспорта, на основе которого строятся другие сети. И хотя технология ATM может использоваться непосредственно для транспорти­ровки сообщений протоколов прикладного уровня, пока она чаще переносит паке­ты других протоколов канального и сетевого уровней (Ethernet, IP, IPX, frame relay, X.25), сосуществуя с ними, а не полностью заменяя. Поэтому протоколы и специ­фикации, которые определяют способы взаимодействия технологии ATM с други­ми технологиями, очень важны для современных сетей. А так как протокол IP является на сегодня основным протоколом построения составных сетей, то стан­дарты работы IP через сети ATM являются стандартами, определяющими взаимо­действие двух наиболее популярных технологий сегодняшнего дня.

Протокол Classical IP (RFC 1577) является первым (по времени появления) протоколом, определившим способ работы интерсети IP в том случае, когда одна из промежуточных сетей работает по технологии ATM. Из-за классической кон­цепции подсетей протокол и получил свое название — Classical.

Одной из основных задач, решаемых протоколом Classical IP, является тради­ционная для IP-сетей задача — поиск локального адреса следующего маршрутиза­тора или конечного узла по его IP-адресу, то есть задача, возлагаемая в локальных сетях на протокол ARP. Поскольку сеть ATM не поддерживает широковещатель­ность, традиционный для локальных сетей способ широковещательных ARP-за-просов здесь не работает. Технология ATM, конечно, не единственная технология, в которой возникает такая проблема, — для обозначения таких технологий даже ввели специальный термин — «Нешироковещательные сети с множественным дос­тупом» (Non-Broadcast networks with Multiple Access, NBMA). К сетям NBMA от­носятся, в частности, сети Х.25 и frame relay.

В общем случае для нешироковещательных сетей стандарты TCP/IP определя­ют только ручной способ построения ARP-таблиц, однако для технологии ATM делается исключение — для нее разработана процедура автоматического отображе­ния IP-адресов на локальные адреса. Такой особый подход к технологии ATM объяс­няется следующими причинами. Сети NBMA (в том числе Х.25 и frame relay) используются, как правило, как транзитные глобальные сети, к которым подклю­чается ограниченное число маршрутизаторов, а для небольшого числа маршрути­заторов можно задать ARP-таблицу вручную. Технология ATM отличается тем, что она применяется для построения не только глобальных, но и локальных сетей. В последнем случае размерность ARP-таблицы, которая должна содержать записи и о пограничных маршрутизаторах, и о множестве конечных узлов, может быть очень большой. К тому же, для крупной локальной сети характерно постоянное изменение состава узлов, а значит, часто возникает необходимость в корректировке

560 Глава 6 • Глобальные сети

таблиц. Все это делает ручной вариант решения задачи отображения адресов для сетей ATM мало пригодным.

В соответствии со спецификацией Classical IP.одна сеть ATM может быть пред­ставлена в виде нескольких IP-подсетей, так называемых логических подсетей (Logical IP Subnet, LIS) (рис. 6.33). Все узлы одной LIS имеют общий адрес сети. Как и в классической IP-сети, весь трафик между подсетями обязательно проходит через маршрутизатор, хотя и существует принципиальная возможность передавать его непосредственно через коммутаторы ATM, на которых построена сеть ATM. Маршрутизатор имеет интерфейсы во всех LIS, на которые разбита сеть ATM.

ПРИМЕЧАНИЕ Подход спецификации Classical IP к подсетям напоминает технику виртуальных локальных сетей VLAN — там также вводятся ограничения на имеющуюся возможность связи через коммутаторы для узлов, принад­лежащих разным VLAN.

В отличие от классических подсетей маршрутизатор может быть подключен к сети ATM одним физическим интерфейсом, которому присваивается несколько IP-адресов в соответствии с количеством LIS в сети.

Решение о введении логических подсетей связано с необходимостью обеспече­ния традиционного разделения большой сети ATM на независимые части, связ­ность которых контролируется маршрутизаторами, как к этому привыкли сетевые интеграторы и администраторы. Решение имеет и очевидный недостаток — марш­рутизатор должен быть достаточно производительным для передачи высокоскоро­стного трафика ATM между логическими подсетями, в противном случае он станет узким местом сети. В связи с повышенными требованиями по производительнос­ти, предъявляемыми сетями ATM к маршрутизаторам, многие ведущие произво­дители разрабатывают или уже разработали модели маршрутизаторов с общей производительностью в несколько десятков миллионов пакетов в секунду.

Все конечные узлы конфигурируются традиционным образом — для них задаег-ся их собственный IP-адрес, маска и IP-адрес маршрутизатора по умолчанию. Кро-

6.4. Компьютерные глобальные сети с коммутацией пакетов 561

ме того, задается еще один дополнительный параметр — адрес ATM (или номер VPI/VCI для случая использования постоянного виртуального канала, то есть PVC) так называемого сервера ATMARP. Введение центрального сервера, который под­держивает общую базу данных для всех узлов сети, — это типичный прием для работы через нешироковещательную сеть. Этот прием используется во многих про­токолах, в частности в протоколе LAN Emulation, рассматриваемом далее.

Каждый узел использует адрес ATM сервера ATMARP, чтобы выполнить обыч­ный запрос ARP. Этот запрос имеет формат, очень близкий к формату запроса протокола ARP из стека TCP/IP. Длина аппаратного адреса в нем определена в 20 байт, что соответствует длине адреса ATM. В каждой логической подсети имеет­ся свой сервер ATMARP, так как узел может обращаться без посредничества марш­рутизатора только к узлам своей подсети. Обычно роль сервера ATMARP выполняет маршрутизатор, имеющий интерфейсы во всех логических подсетях.

При поступлении первого запроса ARP от конечного узла сервер сначала на­правляет ему встречный инверсный запрос ATMARP, чтобы выяснить IP- и ATM-адреса этого узла. Этим способом выполняется регистрация каждого узла в сервере ATMARP, и сервер получает возможность автоматически строить базу данных со­ответствия IP- и ATM-адресов. Затем сервер пытается выполнить запрос ATMARP узла путем просмотра своей базы. Если искомый узел уже зарегистрировался в ней и он принадлежит той же логической подсети, что и запрашивающий узел, то сер­вер отправляет в качестве ответа запрашиваемый адрес. В противном случае дается негативный ответ (такой тип ответа в обычном широковещательном варианте про­токола ARP не предусматривается).

Конечный узел, получив ответ ARP, узнает ATM-адрес своего соседа по логи­ческой подсети и устанавливает с ним коммутируемое виртуальное соединение. Если же он запрашивал ATM-адрес маршрутизатора по умолчанию, то он устанав­ливает с ним соединение, чтобы передать IP-пакет в другую сеть.

Для передачи IP-пакетов через сеть ATM спецификация Classical IP определяет использование протокола уровня адаптации AAL5, при этом спецификация ничего не говорит ни о параметрах трафика и качества обслуживания, ни о требуемой категории услуг CBR, rtVBR, nrtVBR или UBR.

Сосуществование ATM с традиционными технологиями локальных сетей

Технология ATM разрабатывалась сначала как «вещь в себе», без учета того факта, что в существующие технологии сделаны большие вложения и поэтому никто не станет сразу отказываться от установленного и работающего оборудования, даже если появляется новое, более совершенное. Это обстоятельство оказалось не столь важным для территориальных сетей, которые в случае необходимости могли пре­доставить свои оптоволоконные каналы для построения сетей ATM. Учитывая, что стоимость высокоскоростных оптоволоконных каналов, проложенных на большие расстояния, часто превышает стоимость остального сетевого оборудования, пере­ход на новую технологию ATM, связанный с заменой коммутаторов, во многих случаях оказывался экономически оправданным.

Для локальных сетей, в которых замена коммутаторов и сетевых адаптеров рав­нозначна созданию новой сети, переход на технологию ATM мог быть вызван толь­ко весьма серьезными причинами. Гораздо привлекательнее полной замены существующей локальной сети новой сетью ATM выглядела возможность «посте-

562 Глава 6 • Глобальные сети

пенного» внедрения технологии ATM в существующую на предприятии сеть. При таком подходе фрагменты сети, работающие по новой технологии ATM, могли бы мирно сосуществовать с другими частями сети, построенными на основе традици­онных технологий, таких как Ethernet или FDDI, улучшая характеристики сети там, где это нужно, и оставляя сети рабочих групп или отделов в прежнем виде. Применение маршрутизаторов IP, реализующих протокол Classical IP, решает эту проблему, но такое решение не всегда устраивает предприятия, пользующиеся ус­лугами локальных сетей, так как, во-первых, требуется обязательная поддержка протокола IP во всех узлах локальных сетей, а во-вторых, требуется установка некоторого количества маршрутизаторов, что также не всегда приемлемо. Отчет­ливо ощущалась необходимость способа согласования технологии ATM с техноло­гиями локальных сетей без привлечения сетевого уровня.

В ответ на такую потребность ATM Forum разработал спецификацию, называе­мую LAN emulation, LANE (то есть эмуляция локальных сетей), которая призвана обеспечить совместимость традиционных протоколов и оборудования локальных сетей с технологией ATM. Эта спецификация обеспечивает совместную работу этих технологий на канальном уровне. При таком подходе коммутаторы ATM работают в качестве высокоскоростных коммутаторов магистрали локальной сети, обеспечи­вая не только скорость, но и гибкость соединений коммутаторов ATM между со­бой, поддерживающих произвольную топологию связей, а не только древовидные структуры.

Спецификация LANE определяет способ преобразования кадров и адресов МАС-уровня традиционных технологий локальных сетей в ячейки и коммутируемые виртуальные соединения SVC технологии ATM, а также способ обратного преоб­разования. Всю работу по преобразованию протоколов выполняют специальные компоненты, встраиваемые в обычные коммутаторы локальных сетей, поэтому ни коммутаторы ATM, ни рабочие станции локальных сетей не замечают того, что они работают с чуждыми им технологиями. Такая прозрачность была одной из главных целей разработчиков спецификации LANE.

Так как эта спецификация определяет только канальный уровень взаимодей­ствия, то с помощью коммутаторов ATM и компонентов эмуляции LAN можно образовать только виртуальные сети, называемые здесь эмулируемыми сетями, а для их соединения нужно использовать обычные маршрутизаторы.

Рассмотрим основные идеи спецификации на примере сети, изображенной на рис. 6.34.

Основными элементами, реализующими спецификацию, являются программ­ные компоненты LEG (LAN Emulation Client) и LES (LAN Emulation Server). Кли­ент LEC выполняет роль пограничного элемента, работающего между сетью ATM и станциями некоторой локальной сети. На каждую присоединенную к сети ATM локальную сеть приходится один клиент LEC.

Сервер LES ведет общую таблицу соответствия МАС-адресов станций локаль­ных сетей и ATM-адресов пограничных устройств с установленными на них ком­понентами LEC, к которым присоединены локальные сети, содержащие эти станции. Таким образом, для каждой присоединенной локальной сети сервер LES хранит один ATM-адрес пограничного устройства LEC и несколько МАС-адресов стан­ций, входящих в эту сеть. Клиентские части LEC динамически регистрируют в сервере LES МАС-адреса каждой станции, заново подключаемой к присоединен­ной локальной сети.

6.4. Компьютерные глобальные сети с коммутацией пакетов 563

Программные компоненты LEC и LES могут быть реализованы в любых уст­ройствах — коммутаторах, маршрутизаторах или рабочих станциях ATM.

Когда элемент LEC хочет послать пакет через сеть ATM станции другой ло­кальной сети, также присоединенной к сети ATM, он посылает запрос на установ­ление соответствия между МАС-адресом и ATM-адресом серверу LES. Сервер LES отвечает на запрос, указывая ATM-адрес пограничного устройства LEC, к которо­му присоединена сеть, содержащая станцию назначения. Зная ATM-адрес, устрой­ство LEC исходной сети самостоятельно устанавливает виртуальное соединение SVC через сеть ATM обычным способом, описанным в спецификации UNI. После установления связи кадры MAC локальной сети преобразуются в ячейки ATM каждым элементом LEC с помощью стандартных функций сборки-разборки паке­тов (функции SAR) стека ATM.

В спецификации LANE также определен сервер для эмуляции в сети ATM ши­роковещательных пакетов локальных сетей, а также пакетов с неизвестными адре­сами, так называемый сервер BUS (Broadcast and Unknown Server). Этот сервер распространяет такие пакеты во все пограничные коммутаторы, присоединившие свои сети к эмулируемой сети.

В рассмотренном примере все пограничные коммутаторы образуют одну эму­лируемую сеть. Если же необходимо образовать несколько эмулируемых сетей, не

564 Глава 6 • Глобальные сети

взаимодействующих прямо между собой, то для каждой такой сети необходимо активизировать собственные серверы LES и BUS, а в пограничных коммутаторах активизировать по одному элементу LEC для каждой эмулируемой сети. Для хра­нения информации о количестве активизированных эмулируемых сетей, а также ATM-адресах соответствующих серверов LES и BUS вводится еще один сервер — сервер конфигурации LEGS (LAN Emulation Configuration Server).

Спецификация LANE существует сегодня в двух версиях. Вторая версия ликви­дировала некоторые недостатки первой, связанные с отсутствием механизма резервиро­вания серверов LES и BUS в нескольких коммутаторах, что необходимо для надежной работы крупной сети, а также добавила поддержку разных классов трафика.

На основе технологии LANE работает новая спецификация ATM Forum — Multiprotocol Over ATM, МРОА. Эта спецификация ATM определяет эффектив­ную передачу трафика сетевых протоколов — IP, IPX, DECnet и т. п. через сеть ATM. По назначению она близка к спецификации Classical IP, однако решает го­раздо больше задач. Технология МРОА позволяет пограничным коммутаторам 3-го уровня, поддерживающим какой-либо сетевой протокол, но не строящим таблицы маршрутизации, находить кратчайший путь через сеть ATM. МРОА использует для этого серверный подход, аналогичный тому, что применен в LANE. Сервер МРОА регистрирует адреса (например, IP-адреса) сетей, обслуживаемых погра­ничными коммутаторами 3-го уровня, а затем по запросу предоставляет их клиен­там МРОА, встроенным в эти коммутаторы. С помощью технологии МРОА маршрутизаторы или коммутаторы 3-го уровня могут объединять эмулируемые сети, образованные на основе спецификации LANE.

Использование технологии ATM

Технология ATM расширяет свое присутствие в локальных и глобальных сетях не очень быстро, но неуклонно. В последнее время наблюдается устойчивый ежегод­ный прирост числа сетей, выполненных по этой технологии, в 20-30 %.

В локальных сетях технология ATM применяется обычно на магистралях, где хорошо проявляются такие ее качества, как масштабируемая скорость (выпус­каемые сегодня корпоративные коммутаторы ATM поддерживают на своих пор­тах скорости 155 и 622 Мбит/с), качество обслуживания (для этого нужны приложения, которые умеют запрашивать нужный класс обслуживания), петле-видные связи (которые позволяют повысить пропускную способность и обеспе­чить резервирование каналов связи). Петлевидные связи поддерживаются в силу того, что ATM — это технология с маршрутизацией пакетов, запрашивающих уста­новление соединений, а значит, таблица маршрутизации может эти связи учесть — либо за счет ручного труда администратора, либо за счет протокола маршрутиза­ции PNNI.

Основной соперник технологии ATM в локальных сетях — технология Gigabit Ethernet. Она превосходит ATM в скорости передачи данных — 1000 Мбит/с по сравнению с 622 Мбит/с, а также в затратах на единицу скорости. Там, где комму­таторы ATM используются только как высокоскоростные устройства, а возможно­сти поддержки разных типов трафика игнорируются, технологию ATM, очевидно, заменит технология Gigabit Ethernet. Там же, где качество обслуживания действи­тельно важно (видеоконференции, трансляция телевизионных передач и т. п.), тех­нология ATM останется. Для объединения настольных компьютеров технология

6.4. Компьютерные глобальные сети с коммутацией пакетов 565

ATM, вероятно, еще долго не будет использоваться, так как здесь очень серьезную конкуренцию ей составляет технология Fast Ethernet.

В глобальных сетях ATM применяется там, где сеть frame relay не справляется с большими объемами трафика, и там, где нужно обеспечить низкий уровень за­держек, необходимый для передачи информации реального времени.

Сегодня основной потребитель территориальных коммутаторов ATM — это Internet. Коммутаторы ATM используются как гибкая среда коммутации вирту­альных каналов между IP-маршрутизаторами, которые передают свой трафик в ячейках ATM. Сети ATM оказались более выгодной средой соединения IP-марш­рутизаторов, чем выделенные каналы SDH, так как виртуальный канал ATM может динамически перераспределять свою пропускную способность между пульсирую­щим трафиком клиентов IP-сетей. Примером магистральной сети ATM крупного поставщика услуг может служить сеть компании UUNET — одного из ведущих поставщиков услуг Internet Северной Америки (рис. 6.35).

Сегодня по данным исследовательской компании Distributed Networking Associates около 85 % всего трафика, переносимого в мире сетями ATM, составляет трафик компьютерных сетей (наибольшая доля приходится на трафик IP — 32 %).

Хотя технология ATM разрабатывалась для одновременной передачи данных компьютерных и телефонных сетей, передача голоса по каналам CBR для сетей ATM составляет всего 5 % от общего трафика, а передача видеоинформации — 10 %. Теле­фонные компании пока предпочитают передавать свой трафик непосредственно по каналам SDH, не довольствуясь гарантиями качества обслуживания ATM. Кроме того, технология ATM пока имеет недостаточно стандартов для плавного включения в существующие телефонные сети, хотя работы в этом направлении идут.

566 Глава 6 • Глобальные сети

Что же касается совместимости ATM с технологиями компьютерных сетей, то разработанные в этой области стандарты вполне работоспособны и удовлетворяют пользователей и сетевых интеграторов.

Выводы

* К технологиям глобальных сетей с коммутацией пакетов относятся сети Х.25, frame relay, SMDS, ATM и TCP/IP. Все эти сети, кроме сетей TCP/IP, использу­ют маршрутизацию пакетов, основанную на виртуальных каналах между ко­нечными узлами сети.

* Сети TCP/IP занимают особое положение среди технологий глобальных сетей, так как они выполняют роль технологии объединения сетей любых типов, в том числе и сетей всех остальных глобальных технологий. Таким образом, сети TCP/ IP относятся к более высокоуровневым технологиям, чем технологии собствен­но глобальных сетей.

* Техника виртуальных каналов заключается в разделении операций маршрути­зации и коммутации пакетов. Первый пакет таких сетей содержит адрес вы­зываемого абонента и прокладывает виртуальный путь в сети, настраивая промежуточные коммутаторы. Остальные пакеты проходят по виртуальному каналу в режиме коммутации на основании номера виртуального канала, кото­рый является локальным адресом для каждого порта каждого коммутатора.

» Техника виртуальных каналов имеет преимущества и недостатки по сравнению с техникой маршрутизации каждого пакета, характерной для сетей IP или IPX. Преимуществами являются: ускоренная коммутация пакетов по номеру виртуаль­ного канала, а также сокращение адресной части пакета, а значит, и избыточности заголовка. К недостаткам следует отнести невозможность распараллеливания по­тока данных между двумя абонентами по параллельным путям, а также неэффек­тивность установления виртуального пути для кратковременных потоков данных.

* Сети Х.25 относятся к одной из наиболее старых и отработанных технологий глобальных сетей. Трехуровневый стек протоколов сетей Х.25 хорошо работает на ненадежных зашумленных каналах связи, исправляя ошибки и управляя потоком данных на канальном и пакетном уровнях.

* Сети Х.25 поддерживают групповое подключение к сети простых алфавитно-цифровых терминалов за счет включения в сеть специальных устройств PAD, каждое из которых представляет собой особый вид терминального сервера.

* На надежных волоконно-оптических каналах технология Х.25 становится из­быточной и неэффективной, так как значительная часть работы ее протоколов ведется «вхолостую».

* Сети frame relay работают на основе весьма упрощенной, по сравнению с сетя­ми Х.25, технологией, которая передает кадры только по протоколу канального уровня — протоколу LAP-F. Кадры при передаче через коммутатор не подверга­ются преобразованиям, из-за чего технология и получила свое название.

* Важной особенностью технологии frame relay является концепция резервирова­ния пропускной способности при прокладке в сети виртуального канала. Сети frame relay создавались специально для передачи пульсирующего компьютер-

6.5. Удаленный доступ 567

ного трафика, поэтому при резервировании пропускной способности указыва­ется средняя скорость трафика CIR и согласованный объем пульсаций Вс.

» Сеть frame relay гарантирует поддержку заказанных параметров качества об­служивания за счет предварительного расчета возможностей каждого коммута­тора, а также отбрасывания кадров, которые нарушают соглашение о трафике, то есть посылаются в сеть слишком интенсивно.

* Большинство первых сетей frame relay поддерживали только службу постоян­ных виртуальных каналов, а служба коммутируемых виртуальных каналов ста­ла применяться на практике только недавно.

* Технология ATM является дальнейшим развитием идей предварительного ре­зервирования пропускной способности виртуального канала, реализованных в технологии frame relay.

* Технология ATM поддерживает основные типы трафика, существующие у або­нентов разного типа: трафик с постоянной битовой скоростью CBR, характер­ный для телефонных сетей и сетей передачи изображения, трафик с переменной битовой скоростью VBR, характерный для компьютерных сетей, а также для передачи компрессированного голоса и изображения.

* Для каждого типа трафика пользователь может заказать у сети значения не­скольких параметров качества обслуживания — максимальной битовой скорос­ти PCR, средней битовой скорости SCR, максимальной пульсации MBS, а также контроля временных соотношений между передатчиком и приемником, важ­ных для трафика, чувствительного к задержкам.

* Технология ATM сама не определяет новые стандарты для физического уровня, а пользуется существующими. Основным стандартом для ATM является физи­ческий уровень каналов технологий SONET/SDH и PDH.

«Ввиду того что ATM поддерживает все основные существующие типы трафика, она выбрана в качестве транспортной основы широкополосных цифровых сетей с интеграцией услуг — сетей B-ISDN, которые должны заменить сети ISDN.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.