Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






D.2 Влияние лазерного излучения на биологическую ткань






D.2.1 Общие положения

Механизм повреждения лазерным излучением аналогичен для всех биологических систем и может включать тепловые воздействия, термоакустические переходные процессы, фотохимические процессы и нелинейные эффекты. Степень участия каждого из этих воздействий в повреждении ткани может быть связана с определенными физическими параметрами источника облучения, наиболее важными из которых являются длина волны, длительность импульса, размер изображения, облученность и энергетическая экспозиция.

При экспозициях, выше пороговых, доминирующее воздействие связано с длительностью импульса облучения. Так при увеличении длительности импульса основными эффектами при следующих длительностях воздействия являются:

- акустические переходные процессы и нелинейные эффекты при наносекундных и субнаносекундных облучениях;

- тепловые эффекты от 1 мс до нескольких секунд и

- фотохимические эффекты при длительностях свыше 10 с.

Лазерное излучение отличается от большинства других известных видов излучения коллимированностью пучка. Этот фактор совместно с высокой начальной энергией приводит к передаче тканям большого количества энергии. Основным моментом при повреждении лазерным излучением любого типа является поглощение излучения биологической структурой. Поглощение происходит на атомарном или молекулярном уровне и зависит от длины волны. Таким образом, длина волны определяет, какая ткань может быть повреждена от излучения конкретного лазера.

Тепловые эффекты

Если структура поглотила достаточное количество энергии излучения, то колебания составляющих ее молекул увеличиваются, а это означает увеличение количества тепла. Повреждения от лазерного излучения в большинстве случаев связаны с нагревом поглощающей ткани(ей). Обычно такое термическое повреждение имеет ограниченную площадь, расположенную по сторонам участка поглощения лазерной энергии с центром в месте падения пучка. Клетки в пределах этой области имеют признаки ожога, и повреждение ткани связано, главным образом, с разрушением протеина. Как показано выше, действие вторичных механизмов повреждения при воздействии лазерного излучения может быть связано со временем реакции нагрева ткани, т.е. непосредственно связано с длительностью импульса лазера (см. рисунок D.2) и временем поглощения тепла. Термохимические реакции происходят и во время нагревания, и во время охлаждения и определяют зависимость размера пятна от теплового поражения. Если на ткань направлен непрерывный лазер или лазер, генерирующий длинные импульсы, то вследствие проводимости площадь структуры, испытывающей воздействие повышенной температуры, постепенно увеличивается. Такой распространяющийся тепловой фронт создает возрастающую зону повреждения, так как все большее количество клеток нагревается выше теплового предела. Размер изображения пучка также имеет большое значение, поскольку степень периферийного распространения вследствие проводимости является функцией размера, а также температуры начальной области нагрева ткани. Такой тип теплового повреждения обычно связан с воздействием непрерывных лазеров, лазеров с длинными импульсами, но также возможен и от лазеров с короткими импульсами. Для облучаемых поверхностей с размером пятна не более 1-2 мм от лучевого теплового потока определяется размер поврежденного пятна.

а - лазерная энергия поглощается биологической структурой; b - поглощенная энергия создает тепло, которое распространяется в окружающие ткани; с - при воздействии непрерывных лазеров или лазеров с длинными импульсами сохранение теплового фронта постепенно увеличивает область поражения; d - при воздействии лазеров с короткими импульсами высокая плотность мощности создает взрывное разрушение клеток и повреждение в результате физического смещения
Рисунок D.2 - Схема повреждения биологических структур лазером

Фотохимические эффекты

С другой стороны, степень повреждений может быть обусловлена поглощением света молекулами. Этот процесс вызывается поглощением света с определенной энергией. Однако помимо освобождения энергии вещество также подвергается воздействию химической реакции, присущей этому состоянию. Эта фотохимическая реакции способна нанести повреждение и при низких уровнях воздействия. В этом процессе некоторые биологические ткани, такие как кожа, хрусталик глаза и в особенности сетчатка, могут показать необратимые изменения, вызванные длительным воздействием облучения ультрафиолетом и светом коротких длин волн. Такие фотохимические изменения могут привести к повреждению структуры, если длительность облучения чрезмерна или если кратковременные облучения повторяются в течение длительного времени. Отдельные фотохимические реакции, вызываемые лазерным облучением, могут носить патологический или преувеличенный характер. Фотохимические реакции в общем следуют закону Бунзена и Роско, и при продолжительности не более чем от 1 до 3 ч (играют роль соответствующие механизмы) началом является энергетическая экспозиция в постоянном или широком диапазоне по длительности воздействия. Зависимости размера пятна, как происходит в случаях с тепловыми эффектами при тепловой диффузии, не существует.

Нелинейные эффекты

Лазеры с короткими импульсами, характеризующиеся высокой пиковой мощностью (например, с модулированной добротностью или с синхронизацией мод), могут вызывать повреждение ткани при различных комбинациях механизмов передачи энергии. Энергия воздействует на биологическую мишень в течение очень короткого времени, и поэтому создается высокая облученность. Ткани мишени нагреваются так быстро, что жидкие компоненты клеток преобразуются в газ. В большинстве случаев эти фазовые изменения происходят так быстро и имеют такой взрывной характер, что клетки разрываются. Возникшие перепады давления создают вокруг ожогового центра круглую зону разрыва. Подобные перепады давления могут создаваться тепловым расширением и приводить к травмам тканей, удаленных от поглощающих слоев, в результате объемного физического смещения.

При облучении с субнаносекундной длительностью приблизительно от 10 пс до 1 нc вследствие самофокусировки глаз в них концентрируется энергия коллимированного пучка лазера, что приводит к понижению порога безопасной экспозиции. Также проявляются другие нелинейные оптические механизмы, которые играют роль в повреждении сетчатки глаза в субнаносекундном диапазоне.

Все вышеописанные механизмы повреждения воздействуют на сетчатку, влияют на точки прерывания программы или изменяют значение уровней безопасной экспозиции, приводимых в настоящем стандарте.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.