Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Теоретические положения. К полупроводникам относятся материалы, которые по величине удельной электропроводности занимают промежуточное положение между проводниками и диэлектриками.






К полупроводникам относятся материалы, которые по величине удельной электропроводности занимают промежуточное положение между проводниками и диэлектриками.

У большинства используемых в технике полупроводников ширина запрещенной зоны Δ W = 0, 05–3, 2 эВ. Благодаря сравнительно небольшой ширине запрещенной зоны под влиянием поглощения некоторого количества энергии отдельные возбужденные электроны могут быть переброшены через запрещенную зону в зону проводимости (передача энергии электронам может происходить посредством температуры, света, электрического поля, механических усилий и т. д.). На месте электронов, ушедших из заполненной зоны, остаются свободные места – «электронные дырки».

Полупроводники можно разделить на собственные и примесные. В чистом (собственном) полупроводнике число электронов и дырок равно между собой. Место дырок могут занимать другие электроны из валентной зоны. Таким образом, дырка может перемещаться по полупроводнику. При приложении к полупроводнику внешнего электрического поля электроны перемещаются в одном направлении, а дырки – в другом. Поэтому электропроводность полупроводников складывается из двух составляющих:

γ = γ ē + γ д,

где γ ē – электронная электропроводность; γ д – дырочная электропроводность.

Электропроводность чистых полупроводников носит в основном электронный характер; эффект дырочной электропроводности, эквивалентной электропроводности положительными зарядами, выражен слабо. Одна из причин этого – разная подвижность электронов и дырок из-за отличия в эффективных массах электронов (mn) и дырок (mp).

Для полупроводников характерна особенность – исключительная чувствительность электропроводности к различным примесям, которые сильно изменяют энергетическую диаграмму полупроводника.

Используемые в практике полупроводниковые материалы могут быть подразделены на следующие группы [1]:

1) простые (собственные, чистые) полупроводники – это полупроводники, не содержащие примесей;

2) примесные полупроводники, их можно разделить на две подгруппы:

– примеси замещения;

– примеси внедрения;

3) сложные полупроводники (бинарные полупроводники) – это соединения элементов различных групп (n и m) из таблицы Менделеева, имеющие общую формулу AnBm;

4) сложные полупроводниковые композиции, содержащие более двух химических элемента.

Собственными называются полупроводники, не содержащие примесей. Для полупроводников характерна исключительная чувствительность удельной проводимости к различным примесям. Например, при введении в химически чистый германий всего 0, 001 % мышьяка его удельная проводимость увеличится в 10000 раз.

Простых полупроводников всего девять. В современной технике приобрели особое значение кремний, германий и частично – селен.

Для наиболее широко используемых собственных полупроводников ширина запрещенной зоны составляет 0, 5− 2, 5 эВ. В собственных полупроводниках число электронов и дырок равно между собой.

У примесных полупроводников в рабочем интервале температур поставщиками свободных носителей заряда являются примеси. Ощутимая концентрация собственных носителей появляется при возможно более высокой температуре, чем рабочий интервал температур. Чаще других в качестве основного полупроводника применяют элементы IV группы: кремний (Δ W = 1, 12 эВ) и германий (Δ W = 0, 72 эВ).

В примесях замещения атомы примесей находятся в узлах кристаллической решётки. Примеси замещения можно разделить на доноры и акцепторы. Рассмотрим разницу в их влиянии на основной полупроводник на примере основного полупроводника – кремния.

Кремний (Si) относится к IV группе, т.е. у него на внешней оболочке четыре валентных электрона. Он образовывает в кристалле четыре ковалентные связи с соседними атомами. В каждой ковалентной связи – по одному электрону от атома. Вместо трёхмерной решётки изобразим схематически ковалентные связи в виде сетки (рис. 5.1).

 

Рис. 5.1. Схематическое изображение кристаллической

решётки кремния с примесью фосфора

 

Если к кремнию добавить примесь фосфора, который относится к
V группе и имеет на внешней орбите пять валентных электронов, то пятый электрон в ковалентной связи участвовать не будет. Со своим атомом он связан только силой кулоновского взаимодействия, энергия этой связи (WP) всего 0, 01− 0, 1 эВ. Такая примесь называется донорной (дающей), она создает дополнительную энергетическую зону (рис. 5.2а) рядом с зоной проводимости в результате облегчается переход с дополнительной зоны в зону проводимости. Полупроводник с такой примесью имеет концентрацию электронов, большую, чем концентрацию дырок. Эти полупроводники называются полупроводниками n-типа.

Если к кремнию добавить примесь индия, который относится к III группе и имеет на внешней орбите три валентных электрона, то в одной из ковалентных связей появится вакантное место – дырка. Такая примесь называется акцепторной, она создаёт дополнительную энергетическую зону рядом с заполненной зоной (рис. 5.2, б). Электроны, получившие дополнительную энергию, будут в первую очередь переходить в эту дополнительную энергетическую зону. Эти электроны (в виду разобщенности атомов примеси) не участвуют в электрическом токе. Такой полупроводник будет иметь концентрацию дырок большую, чем концентрация электронов, перешедших из валентной зоны в зону проводимости. Эти полупроводники относятся к полупроводникам p-типа.

 

 

Рис. 5.2. Энергетическая диаграмма кремния с примесью фосфора а) и индия б)

 

Примеси внедрения располагаются не в узлах, вместо основного элемента, а в межузловых пространствах. Тип электропроводности в этом случае зависит от размеров примесных атомов. Если внедрять в тесные межузловые пространства решётки германия большой по размерам атом лития, то это оказывается возможным только после отрыва у него единственного электрона с внешней орбиты. Образовавшийся ион лития меньше размером и помещается в межузловое пространство, а освободившийся электрон обусловливает электропроводность n-типа.

Внедрение в межузловое пространство атома кислорода, имеющего сравнительно небольшие размеры и шесть электронов на внешней орбите, приводит наоборот – к захвату атомом кислорода двух электронов (до восьми) из атомов полупроводника, вследствие чего возникает электропроводность p-типа.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.