Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Задача двух тел в ОТО






Нормальная орбита любого тела, захваченного притяжением другого тела, представляет собой эллипс или окружность – именно такие орбиты мы наблюдаем в Солнечной системе. Однако общая теория относительности утверждает, что в окрестностях крайне массивных тел — там, где пространство оказывается сильно искривлено благодаря наличию колоссального гравитационного поля — спектр возможных стабильных орбит значительно расширяется. В подобных условиях физические объекты начинают вести себя весьма странно. Например, тело может подлететь к черной дыре по крутой параболе, сделать вокруг нее несколько стремительных коротких витков, а затем снова заложить вытянутую петлю – и так далее.

Пример

Любая классическая система состоящая из двух частиц, по определению задача двух тел. Во многих случаях, однако, одно тело много тяжелее другого, как например в системе Земля и Солнце. В таких случаях более тяжёлая частица играет роль центра масс и задача сводится к задаче о движения одного тела в потенциале другого.[1]

 

Зако́ ны Ке́ плера — три эмпирических соотношения, интуитивно подобранных Иоганном Кеплером на основе анализа астрономических наблюдений Тихо Браге. Описывают идеализированную гелиоцентрическую орбиту планеты. В рамках классической механики выводятся из решения задачи двух тел предельным переходом mp / mS → 0, где mp, mS — массы планеты и Солнца.

Первый закон Кеплера (закон эллипсов)

Первый закон Кеплера.

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Комментарий: Первый закон Кеплера немедленно противоречит классическому закону сохранения импульса, как только слово «находится» оказывается тождественным слову «покоится». Классическая динамика Ньютона чрезвычайно чувствительна к выбору системы отсчёта, а именно к свойству инерциальная/неинерциальная. В той мере, в которой законы Кеплера претендуют на общность, система отсчёта подразумевается общей — гелиоцентрической. Следовательно, кеплеровское Солнце «покоится» в фокусе каждой эллиптической орбиты (тем самым Кеплер подразумевает разложение Солнечной системы в прямую сумму независимых орбит). Однако суммарный импульс системы p 1+ p 2, в которой «тяготеющее» тело покоится p 2= 0, равен импульсу единственно подвижного тела p 1. Если последнее изменяется, суммарный импульс — вектор непостоянный. Нижеследующее «доказательство» подразумевает, что центр масс системы «Солнце — планета» совпадает с центром Солнца (на самом же деле для Меркурия несовпадение составляет порядка 10-7, для Юпитера — 10-3).

Форма эллипса и степень его сходства с окружностью характеризуется отношением , где c — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), a — большая полуось. Величина e называется эксцентриситетом эллипса. При c = 0 и e = 0 эллипс превращается в окружность.

Закон всемирного тяготения Ньютона гласит, что «каждый объект во вселенной притягивает каждый другой объект по линии соединяющей центры масс объектов, пропорционально массе каждого объекта, и обратно пропорционально квадрату расстояния между объектами». Это предполагает, что ускорение a имеет форму

Вспомним, что в полярных координатах

В координатной форме запишем

Подставляя и во второе уравнение, получим

которое упрощается

После интегрирования запишем выражение

для некоторой константы , которая является удельным угловым моментом ().Пусть

Уравнение движения в направлении становится равным

Закон всемирного тяготения Ньютона связывает силу на единицу массы с расстоянием как

где G — универсальная гравитационная константа и M — масса звезды.

В результате

Это дифференциальное уравнение имеет общее решение:

для произвольных констант интегрирования e и θ 0.

Заменяя u на 1/ r и полагая θ 0 = 0, получим:

Мы получили уравнение конического сечения с эксцентриситетом e и началом системы координат в одном из фокусов. Таким образом, первый закон Кеплера прямо следует из закона всемирного тяготения Ньютона и второго закона Ньютона.

Второй закон Кеплера (закон площадей)

Второй закон Кеплера.

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные времена радиус-вектор, соединяющий Солнце и планету, заметает сектора равной площади.

Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.

Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

По определению угловой момент точечной частицы с массой m и скоростью записывается в виде:

.

где - радиус-вектор частицы а - импульс частицы.

По определению

.

В результате мы имеем

.

Продифференцируем обе части уравнения по времени

поскольку векторное произведение параллельных векторов равно нулю. Заметим, что F всегда параллелен r, поскольку сила радиальная, и p всегда параллелен v по определению. Таким образом можно утверждать, что - константа.

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.

, где T 1 и T 2 — периоды обращения двух планет вокруг Солнца, а a 1 и a 2 — длины больших полуосей их орбит.

Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты: , где M – масса Солнца, а m 1 и m 2 – массы планет.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.

Механическая работа

Работа силы F за время Δ t процесса γ (t)) — это физическая величина, являющаяся количественной характеристикой действия силы F на процесс γ (t), зависящая от численной величины и направления силы и от перемещения точки ее приложения






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.