Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Физические явления, ограничивающие микроминиатюризацию






Анализ показывает, что наряду с тенденцией уменьшения геометрических размеров каждого элемента в схемах проявляется тенденция к увеличению числа элементов в схеме. Если в начале 1960-х годов число элементов в схеме составляло десятки, то в начале 2000-х годов число элементов в схеме составляет сотни миллионов. Обращает на себя внимание тот факт, что в настоящее время плотность упаковки приближается к пределу, обусловленному физическими ограничениями [32].

Проблемы, связанные с физическими ограничениями микроминиатюризации, требуют рассмотрения основных физических явлений, которые запрещают дальнейшее уменьшение линейных геометрических размеров транзисторов, напряжений и токов транзистора, ограничивают его быстродействие и плотность упаковки. В таблице 5 перечислены предельно допустимые значения параметров и основные физические ограничения.

Таблица 5. Физические ограничения микроминиатюризации

Минимальную длину канала ограничивает эффект, связанный со смыканием областей истока и стока при приложении напряжения к стоку VDS. Поскольку ширина lоб p-n перехода, смещенного в обратном направлении, равна

(6.104)

то минимальная длина канала должна быть больше удвоенной ширины p-n перехода Lmin > 2lоб и быть прямо пропорциональна корню квадратному от напряжения питания и обратно пропорциональна корню квадратному от уровня легирования подложки.

На рисунке 6.23 приведена зависимость Lmin от концентрации легирующей примеси NA, толщины окисла dox и напряжения питания Vпит, рассчитанная по (6.104). Отсюда видно, что при толщине окисла dox = 100 A и концентрации акцепторов NA = 1017 см-3 возможно создание МОП-транзистора с длиной канала L = 0, 4 мкм при напряжении питания 1-2 В. Дальнейшее увеличение легирующей концентрации в подложке может привести к туннельному пробою p+-n+ перехода.

Рис. 6.23. Минимальная длина канала L, определяемая физическими ограничениями, в зависимости от напряжения питания, толщины окисла и уровня легирования

На рисунке 6.24 показана зависимость напряжения пробоя такого перехода от легирующей концентрации в подложке.

Минимальную толщину подзатворного диэлектрика ограничивает сквозной ток через диэлектрик затвора. Считая ток туннельным и используя для тока выражение Фаулера - Нордгейма для туннелирования через треугольный потенциальный барьер, получаем, что для толщины dox > 50 A плотность тока пренебрежимо мала. Предельное быстродействие определяется временем пролета носителей через канал при длине канала L = 1 мкм, скорости дрейфа, равной скорости света, и составляет τ = 0, 03 нс. Очевидно, что минимальное напряжение питания не может быть менее kT/q из-за флуктуаций тепловой энергии.

Рис.6.Зависимость напряжения пробоя p-n+ перехода стока от концентрации легирующей примеси в подложке NA






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.