Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Физиологические механизмы развития выносливости. Основные показатели, характеризующие эффективность аэробного механизма энергообеспечения.






Общая выносливость зависит от доставки кислорода работающим мышцам и, главным образом, определяется функционированием кисло-родтранспортной системы: сердечно-сосудистой, дыхательной и системой крови.

Развитие общей выносливости обеспечивается разносторонними пере­стройками в дыхательной системе. Повышение эффективности дыхания достигается:

- увеличением (на 10-20 %) легочных объемов и емкостей (ЖЕЛ достигает 6-8 л и более),

- нарастанием глубины дыхания (до 50-55% ЖЕЛ),

- увеличением диффузионной способности легких, что обусловлено увеличением альвеолярной поверхности и объема крови в легких, протекающей через расширяющуюся сеть капилляров,

- увеличением мощности и выносливости дыхательных мышц, что приводит к росту объема вдыхаемого воздуха по отношению к функ­циональной остаточной емкости легких (остаточному объему и ре­зервному объему выдоха).

Все эти изменения способствуют также экономизации дыхания: боль­шему поступлению кислорода в кровь при меньших величинах легочной вентиляции. Повышение возможности более выгодной работы за счет аэробных источников энергии позволяет спортсмену дольше не переходить к энергетически менее выгодному использованию анаэробных источников, т. е. повышает вентиляционный порог анаэробного обмена (ПАНО).

Решающую роль в развитии общей выносливости играют морфофунк-циональные перестройки в сердечно-сосудистой системе, отражающие адаптацию к длительной работе:

- увеличение объема сердца (" большое сердце" особенно характерно для спортсменов-стайеров) и утолщение сердечной мышцы - спортивная гипертрофия,

- рост сердечного выброса (увеличение ударного объема крови).

- замедление частоты сердечных сокращений в покое (до 40-50 уд./мин и менее) в результате усиления парасимпатических влияний - спортивная брадикардия, что облегчает восстановление сердеч­ной мышцы и последующую ее работоспособность,

- снижение артериального давления в покое (ниже 105 мм рт. ст.) -спортивная гипотония.

В системе крови повышению общей выносливости способствуют.

- увеличение объема циркулирующей крови (в среднем на 20%) за счет, главным образом, увеличения объема плазмы, при этом адап­тивный эффект обеспечивается: 1) снижением вязкости крови и соответствующим облегчением кровотока и 2) большим венозным воз­вратом крови, стимулирующим более сильные сокращения сердца,

- увеличение общего количества эритроцитов и гемоглобина (следует заметить, что при росте объема плазмы показатели их относительной концентрации в крови снижаются),

- уменьшение содержания лактата (молочной кислоты) в крови при работе, связанное, во-первых, с преобладанием в мышцах выносливых людей медленных волокон, использующих лактат как источник энергии, и во-вторых, обусловленное увеличением емкости буферных систем крови, в частности, ее щелочных резервов. При этом лактатный порог анаэробного обмена (ПАНО) так же нарастает, как и вентиляционный ПАНО.

Несмотря на указанные адаптивные перестройки функций, в организме стайера происходят значительные нарушения постоянства внутренней среды (перегревание и переохлаждение, падение содержания глюкозы в крови и т. п.). Способность спортсмена переносить весьма длительные нагрузки обеспечивается его способностью " терпеть" такие изменения.

В скелетных мышцах у спортсменов, специализирующихся в работе на выносливость, преобладают медленные мышечные волокна (до 80-90 %). Рабочая гипертрофия протекает по саркоплазматическому т и п у. т. е. за счет роста объема саркоплазмы. В ней накапливаются запасы гликогена, липидов, миоглобина, становится богаче капиллярная сеть, увеличивается число и размеры митохондрий. Мышечные волокна при длительной работе включаются посменно, восстанавливая свои ресурсы в моменты отдыха.

В центральной нервной системе работа на выносливость сопровождается формированием стабильных рабочих доминант, которые обладают высокой помехоустойчивостью, отдаляя развитие запредельного торможения в условиях монотонной работы. Особой способностью к длительным циклическим нагрузкам обладают спортсмены с сильной уравновешенной нервной системой и невысоким уровнем подвижности - флегматики.

Специальные формы выносливости характеризуются разными адаптивным перестройками организма в зависимости от специфики физической нагрузки.

Специальная выносливость в циклических видах спорта зависит от длины дистанции, которая определяет соотношение аэробного и анаэробного энергообеспечения.

В лыжных гонках на длинные дистанции соотношение аэробной и анаэробной работы порядка 95% и 5%; в академической гребле на 2 км, соответственно, 70% и 30%; в спринте - 5% и 95%. Это определяет разные тре­бования к двигательному аппарату и вегетативным системам в организме спортсмена.

Специальная выносливость к статической работе базируется на высокой способности нервных центров и работающих мышц поддерживать непрерывную активность (без интервалов отдыха) в анаэробных условиях. Торможение вегетативных функций со стороны мошной моторной доминанты по мере адаптации спортсмена к нагрузке постепенно снижается, что облегчает дыхание и кровообращение. Статическая выносливость мышц шеи и туловища, содержащих больше медленных волокон, выше по сравнению с мышцами конечностей, более богатых быстрыми волокнами.

Силовая выносливость зависит от переносимости нервной системой и двигательным аппаратом многократных повторений натуживания, вызывающего прекращение кровотока в нагруженных мышцах и кислородное голодание мозга. Повышение резервов мышечного гликогена и кислородных запасов в миоглобине облегчает работу мышц. Однако почти полное и одновременное вовлечение в работу всех ДЕ лишает мышцы резервных ДЕ, что лимитирует длительность поддержания усилий.

Скоростная выносливость определяется устойчивостью нервных центров к высокому темпу активности. Она зависит от быстрого восстановления АТФ в анаэробных условиях за счет креатинфосфата и реакций гликолиза.

Выносливость в ситуационных видах спорта обусловлена устойчивостью центральной нервной системы и сенсорных систем к работе переменной мощности и характера - " рваному" режиму, вероятностным перестройкам ситуации, многоальтернативному выбору, сохранению координации при постоянном раздражении вестибулярного аппарата.

Выносливость к вращениям и ускорениям требует хорошей устойчивости вестибулярной сенсорной системы. Квалифицированные фигуристы, например, без отрицательных соматических и вегетативных реакций могут переносить до 300 вращений на кресле Барани вокруг вертикальной оси. После таких многократных вращений у этих спортсменов совершенно незначительно так называемое время поиска стабильной позы. Активные вращения при выполнении специальных упражнений в большей мере способствуют повышению вестибулярной устойчивости, чем пассивные вра­щения на тренажерах.

Выносливость к гипоксии, характерная, например, для альпинистов, связана с понижением тканевой чувствительности нервных центров, сердечной и скелетных мышц к недостатку кислорода. Это свойство в значительной мере является врожденным. Лишь несколько спортсменов-альпинистов во всем мире смогли подняться на высоту более 8 тыс. м (Эверест) без кислородного прибора (например, Владимир Балыбердин). Показателем эффективности аэробных механизмов энергообеспечения является уровень порога анаэробного обмена (ПАНО) интенсивность работы, при которой кислорода уже недостаточно, и в энерго-обеспечение включаются анаэробные источники энергии. Чем выше этот показатель, тем больше интенсивность физической работы, которую человек может выполнить без образования кислородного долга. Если же интенсивность работы выше уровня ПАНО, то энергообеспечение переходит на смешанный аэробно-анаэробный путь. Однако анаэробных источников энергии хватает лишь на 1-3 минуты интенсивной физической работы. Поэтому при продолжительной мышечной деятельности основная роль принадлежит механизмам аэробного энергообеспечения, аэробному потенциалу организма, который является ведущим в жизнеобеспечении организма. Обнаружена тесная взаимосвязь между аэробными возможностями организма, с одной стороны, и состоянием здоровья с другой. Чем ниже уровень МПК, тем больше заболеваемость населения и наоборот. Безопасный уровень здоровья, гарантирующий отсутствие заболеваний сердечно-сосудистой системы, отмечен у людей лишь у людей, имеющих достаточно высокие аэробные возможности – у мужчин более 42 и у женщин больше 35 миллилитров кислорода в минуту на 1 кг массы тела (так называемые относительные величины МПК).






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.