Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Принцип действия теплового насоса






Принцип действия и конструкция теплового насоса идентичны холодильной машине и установке для кондиционирования воздуха (кондиционеру), в этих устройствах различна лишь задача: холодильники и кондиционеры используются для охлаждения, а тепловые насосы – для нагрева. Из-за одинаковой конструкции бытовые кондиционеры часто могут выполнять и функции теплового насоса, в так называемом режиме обогрева.

Принцип действия теплового насоса основан на отдаче и поглощении теплоты рабочего агента «хладагента» в цикле при периодическом переходе его из одного состояния в другое.

Тепловые насосы по виду рабочего агента разделяются на три типа: парокомпрессионные, абсорбционные и термоэлектрические.

В парокомпрессионных тепловых насосах (рисунок 1) используется теплота испарения и конденсации хладагента, которым обычно являются фреоны.

Рисунок 1 - Цикл парокомпрессионного теплового насоса

qи – теплота, отдаваемая низкопотенциальным теплоносителем и получаемая хладагентом при его испарении; qк – теплота, отдаваемая хладагентом при его конденсации и получаемая высокопотенциальным теплоносителем; lсж – работа, необходимая для сжатия хладагента; q тн – тепловая нагрузка теплового насоса

 

При более высоком давлении температура конденсации (кипения) повышается, поэтому хладагент конденсируется при более высокой температуре, чем испаряется. Поэтому тепловой насос позволяет передавать теплоту от холодного теплоносителя к горячему. При этом он потребляет энергию lсж, необходимую для сжатия хладагента, но эта энергия должна быть меньше, чем количество теплоты q и, получаемое горячим теплоносителем. Эффективность теплового насоса тем выше, чем больше величина q и превышает работу lсж.

Отношение теплоты, переданной горячему теплоносителю, к работе, затрачиваемой на сжатие, называется коэффициентом преобразования теплоты m:

m = (1.1)

Значение m должно быть больше 1, чем оно выше тем работа теплового насоса эффективней. При m = 1 работа теплового насоса теряет смысл, так как электроэнергию, затрачиваемую на сжатие, можно использовать для получения теплоты с помощью намного более дешевых, чем тепловые насосы, электронагревателей. При m < 1 в тепловом насосе энергии тратится больше, чем производится теплоты.

Компрессионные тепловые насосы является самыми распространенными. В абсорбционном тепловом насосе в качестве рабочего тела используется смесь хладагента с его раствором в жидкости, имеющей более высокую температуру кипения. В отличие от чистых веществ растворы обладают способностью абсорбировать пар раствора одного состава жидким раствором другого состава даже в том случае, когда температура жидкости выше температуры пара. Схема абсорбционной установки аналогична схеме идеальной парокомпрессионной установке, только компрессор заменен абсорбционным узлом (рисунок 2).

Рисунок 2 - Абсорбционный узел холодильной установки:

1 – абсорбер: 2 – насос; 3 – генератор пара; 4 – редукционный вентиль

 

Абсорбционный узел (рисунок 2) служит для сжатия хладоагента от давления на выходе из испарителя теплонасосной установки p2 до давления на входе в конденсатор теплонасосной установки p1. В абсорбер поступает сухой насыщенный пар хладагента, куда подается также раствор хладагента, имеющий температуру T1. Этот раствор абсорбирует хладагент, а выделяющаяся теплота абсорбции отводится холодным теплоносителем. Концентрация хладагента в растворе в процессе абсорбции увеличивается, и следовательно, из абсорбера выходит обогащенный раствор. С помощью насоса, повышающего давление обогащенного раствора от p2 до p1, раствор подается в генератор аммиачного пара, где за счет теплоты, подводимой к раствору от внешнего источника, происходит испарение раствора. Выделяющийся при этом пар практически состоит из хладагента, так как парциальное давление растворителя в газовой фазе при этих температурах ничтожно мало. Обедненный хладагентом раствор, выходящий из генератора пара, дросселируется в редукционном вентиле от давления p1 до давления p 2 и затем поступает в абсорбер, где он обогащается хладагентом.

Преимущество этого способа сжатия хладагента заключается в том, что для повышения давления используется насос, а не компрессор. Затрата работы на привод насоса пренебрежимо мала по сравнению с затратой работы в компрессоре. Выигрыш в работе, затрачиваемой на привод компрессора, компенсируется затратой теплоты в генераторе пара. Эта теплота отводится затем холодным теплоносителем в абсорбере.

К недостаткам абсорбционных насосов можно отнести наличие двух теплообменников (абсорбера и генератора), к которым соответственно необходимо подводить холодный и горячий теплоноситель. Абсорбционные холодильные установки целесообразно применять в том случае, когда может быть использован отработавший пар или другие теплоносители низкого температурного потенциала.

С развитием компрессоростроения абсорбционные холодильные установки были вытеснены парокомпрессионными установками.

Термоэлектрические тепловые насосы используют эффект возникновения электрического тока при нагреве спаев разнородных металлов и обратный эффект охлаждение спаев при пропускании через них электрического тока.

Тепловые насосы могут использоваться для следующих целей.

1. Индивидуально-бытовое теплоснабжение жилых и общественных зданий. При этом холодным теплоисточником является теплота окружающей среды (в основном водных источников, земли и, очень редко, воздуха) и теплота геотермальных источников. При использовании теплового насоса экономится электроэнергия или топливо, которых потребляется меньше, чем при использовании электронагревателей или водогрейных котлов.

2. Применение в системах вентиляции для нагрева нового холодного воздуха или получения воды на отопление за счет теплоты теплого воздуха, удаляемого из помещения.

3. Получение горячей воды для технического водоснабжения промышленных предприятий за счет низкопотенциальных тепловых отходов, например, оборотной системы охлаждения компрессоров, систем кондиционирования и охлаждения оборудования, замена градирен и других охлаждающих устройств на оборотных системах водоснабжения предприятий.

4. Подогрев оборотной воды тепловых сетей.

5. Использование для выработки теплоты в системах централизованного теплоснабжения с пиковым догревом подаваемой воды в обычных котельных.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.