Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Уравнение неразрывности (сплошности)






Фильтрационного потока

Выведем уравнение неразрывности (сплошности) фильтрационного потока сжимаемого флюида в деформируемой пористой среде (самый общий случай). Для этого выделим в пористой среде элементарный объем в виде параллелепипеда с ребрами dx, dy, dz (рис. 5), причем длины ребер во много раз больше поперечных размеров поровых каналов.

 


 

Рис.5

 

В рассматриваемом общем случае неустановившегося движения сжимаемой жидкости (флюида) скорость фильтрации `V и плотность жидкости r являются функциями координат и времени, т.е.

`V = `V(x, y, z, t), r = r(x, y, z, t,).

Проекции на ось X массовых скоростей фильтрации в точках А и А1, расположенных в центрах боковых граней ab и a1b1, соответственно равны

rVx, и (rVx)1 = rVx + .

Заметим, что в силу малости выделенного объема и его граней можно считать, что плотность r и скорость фильтрации `V распределены на гранях ab и a1b1 равномерно и равны значениям их в точках А и А1 соответственно.

Масса флюида, поступающего в выделенный элемент через левую грань ab за малый промежуток времени dt, равна rVx*dydzdt.

Масса флюида, вытекающего из выделенного объема через правую грань a1b1 за этот же отрезок времени dt, равна

.

Тогда изменение массы флюида в объеме выделенного элемента aba1b1 за отрезок времени dt за счет потока вдоль оси Х будет равна:

dMx = [ (rVx)1 - (rVx) ] dydzdt = dxdydzdt.

Рассматривая фильтрацию флюида в направлении осей Y и Z, получим аналогичные выражения для изменения массы в элементарном объеме за счет потока вдоль этих осей в виде:

dMy = dxdydzdt, dMz = dxdydzdt.

Тогда общее изменение (накопление) массы флюида в объеме выделенного элемента aba1b1 за время dt будет равно:

dM = dMx + dMy + dMz,

т.е. dM = - * dxdydzdt. (2.9)

С другой стороны, масса флюида, находящегося в рассматриваемом поровом объеме элемента aba1b1, равна

M = rmdxdydz,

где m - коэф. пористости пласта.

Изменение массы флюида в этом же элементарном объеме aba1b1 за время dt можно записать так (объем элемента dxdydz фиксирован)

dM = . (2.10)

Приравнивая выражения (2.9) и (2.10) и сокращая их на dxdydzdt, получаем уравнение неразрывности фильтрационного потока.

. (2.11)

С физической точки зрения уравнение неразрывности (2.11) представляет собой уравнение материального баланса фильтрующейся жидкости (флюида) и выражает закон сохранения массы.

Заметим дополнительно, что уравнение неразрывности (2.11) справедливо только в том случае, когда внутри выделенного элемента пласта нет источников или стоков; это означает, что жидкость или газ движутся в продуктивном пласте без разрывов в сплошности потока, и что в поле скоростей фильтрации нет особых точек (например, скважин), в которых жидкость (газ) может «исчезать» или «появляться». При движении жидкостей (газов) в пласте к скважинам это уравнение (2.11) справедливо во всех точках пласта вне скважины.

Выражение в левой части уравнения (2.11) представляет собой дивергенцию вектора массовой скорости r и кратко записывается так:

.

Поэтому уравнение неразрывности (2.11) принимает краткую запись

. (2.12)






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.