Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Примеры решения задач по теме «Диэлектрические материалы». 2 страница






Поляризация – процесс упорядочения его связанных электрических зарядов под действием электрического поля. Качественно интенсивность поляризации диэлектрика определяется поляризованностью Р, равной отношению индуцированного электрического момента объема диэлектрика к этому объему, когда последний стремится к нулю:

 

. (2.1)

 

Поляризованность - векторная величина: ее направление совпадает с направлением электрического момента - от отрицательного заряда к положительному. Так как электрический момент измеряется в [Кл× м], а объем -в [м3], то единицей модуля поляризованности будет [Кл/м2].

Существует несколько видов поляризации: электронная, ионная, дипольная и миграционная.

 

2.1.1. Электронная поляризация. ▲

 

Электронная поляризация - это смещение электронных орбит относительно положительно заряженного ядра.

 

 

 

Рис. 2.1. Электронная поляризация диэлектриков.

 

Она происходит во всех атомах любого вещества и, следовательно, во всех диэлектриках, независимо от наличия в них других видов поляризации.

Электронная поляризация устанавливается за очень короткое время после наложения электрического поля - порядка 10-14 - 10-16 с, что сравнимо с периодом световых колебаний. Поэтому электронная поляризация проявляется на всех частотах электрического поля, вплоть до оптических.

При увеличении размеров атома электронная поляризуемость увеличивается, так как при этом не только становится слабее связь электронов внешних оболочек с ядром атома и увеличивается смещение оболочки, но и возрастает заряд ядра.

 

2.1.2. Ионная поляризация. ▲

Ионная поляризация - смещение друг относительно друга разноименно заряженных ионов в веществах с ионными связями под действием сил внешнего электрического поля. При этом центры положительных и отрицательных зарядов q ионов ячейки, совпадающие до приложения электрического поля, под действием поля раздвигаются на некоторое расстояние x в результате смещения разноименно заряженных ионов в противоположных направлениях, вследствие чего элементарная ячейка приобретает индуцированный электрический момент рu = qx.

 

 

Рис. 2.2. Ионная поляризация диэлектриков.

 

Ионная поляризация устанавливается также за малое время (хотя и большее, чем электронная) - 10-13 с.

Ионная поляризуемость больше у тех веществ, где ионы слабо связаны друг с другом и несут большие электрические заряды, т. е. являются многовалентными.

 

2.1.3. Дипольная поляризация. ▲

 

Дипольная поляризация характерна для полярных диэлектриков, молекулы которых представляют собой твердые диполи, электрические моменты которых ориентированы произвольно. Сущность этого метода поляризации заключается в повороте в направлении электрического поля молекул, имеющих постоянный электрический момент.

 

 

 

 

Рис. 2.3. Дипольная поляризация диэлектриков.

 

Диэлектрики можно подразделить на полярные (содержащие постоянные диполи, способные к переориентации) и неполярные (не содержащие ориентирующихся диполей).

В молекулах любого вещества содержатся положительные и отрицательные электрические заряды. Алгебраическая сумма всех зарядов равна нулю, когда вещество не наэлектризовано, т. е. электрически нейтрально. Однако пространственное расположение зарядов в молекуле у каждого вещества различно. Если заменить все положительные заряды молекулы одним суммарным, считая его расположенным в центре тяжести отдельных положительных зарядов, и такое же суммирование провести для отрицательных зарядов, то эти суммарные точечные заряды могут либо не совпадать в пространстве друг с другом, либо совпадать.

В первом случае молекула даже в отсутствие внешнего электрического поля будет представлять собой электрический диполь с отличным от нуля постоянным электрическим моментом рП=ql, где q — суммарный положительный (отрицательный) заряд молекулы; l — расстояние между суммарными зарядами, т. е. плечо диполя. В большинстве случаев постоянный электрический момент молекул полярных веществ рП = 10-30 - 10-29 [Кл× м].

Электрический момент молекулы - величина векторная, направленная от отрицательного заряда -q к положительному заряду +q. У неполярных веществ l = 0 и потому рП = 0.

Независимо от электрических свойств о полярности вещества можно судить по строению его молекул. Молекулы, имеющие симметричное строение и центр симметрии, неполярны, так как центры тяжести положительных и отрицательных зарядов совпадают с центром симметрии молекулы и l = 0 и рП = 0. Несимметричные молекулы полярны.

Более строго дипольную поляризацию можно объяснить как внесение внешним электрическим полем некоторой упорядоченности в положения полярных молекул, непрерывно совершающих хаотические тепловые движения. Следовательно, дипольная поляризация по своей природе связана с тепловым движением молекул, и на нее оказывает существенное влияние температура.

Дипольная поляризация в простейшем виде проявляется в газах, жидкостях и вязких аморфных веществах.

Процесс установления дипольной поляризации после включения диэлектрика под напряжение требует относительно большого времени. Поляризованность РД дипольной поляризации за время t с момента снятия приложенного напряжения уменьшается по экспоненциальному закону:

 

(2.2)

 

Постоянную времени этого процесса τ называют временем релаксации дипольной поляризации. Если период приложенного переменного напряжения меньше τ, то диполи не успевают ориентироваться вслед за полем. Так как τ обычно имеет порядок 10-6 - 10-10 с, дипольная поляризация проявляется лишь на частотах не ниже 106 - 1010 Гц.

При понижении температуры τ сильно возрастает.

 

2.1.4. Миграционная поляризация. ▲

 

Миграционная поляризация - перемещение (миграция) зарядов в полупроводящих включениях до их границ и накопления зарядов на границах раздела.

Наблюдается в некоторых диэлектриках и системах изоляции, в частности в неоднородных диэлектриках, особенно с полупроводящими включениями. Этот вид поляризации заключается в процессе установления и снятия миграционной поляризации сравнительно медленные - секунды, минуты, часы. Поэтому миграционная поляризация обычно наблюдается лишь при весьма низких частотах.

 

2.2. Электропроводность диэлектриков. ▲

 

Все диэлектрические материалы под воздействием постоянного напряжения пропускают некоторый незначительный ток, называемый током утечки. Чем выше удельное сопротивление материала r, тем выше качество электроизоляционного материала. Электропроводность диэлектриков имеет ряд характерных особенностей.

Во-первых, ввиду очень большого удельного сопротивления диэлектрика, ток через объем участка изоляции - объемный сквозной ток IV - очень мал и сравнимым с ним оказывается ток по поверхности - сквозной поверхностный ток IS. Поэтому необходимо учитывать наряду с объемным и поверхностный ток, полагая общий ток участка изоляции равным:

 

. (2.3)

 

Следовательно, проводимость G = I / U складывается из проводимостей объемной G = IV / U и поверхностной G = IS / U:

 

. (2.4)

 

Величины обратные указанным проводимостям, называют сопротивлениями участка изоляции - объемным RV и поверхностным RS. Общее сопротивление изоляции определяют как результирующее двух параллельно включенных сопротивлений:

 

. (2.5)

 

Под удельным сопротивлением диэлектрика ρ обычно понимают удельное объемное сопротивление, а для характеристики RS вводят понятие удельного поверхностного сопротивления rS.

Второй характерной особенностью электропроводности диэлектриков является постепенное спадание тока со временем после подключения постоянного напряжения. В начальный промежуток времени в цепи протекает быстро спадающий ток смещения Iсм, плотность которого Jсм = ¶D / ¶t. Этот ток прекращается за время порядка постоянной времени RC схемы источник — образец, которое обычно мало. Однако ток продолжает изменяться и после этого часто в течение минут и даже часов.

Ток абсорбции [Iабс] - медленно меняющаяся составляющая тока, обусловленная перераспределением свободных зарядов в объеме диэлектрика Ток абсорбции связан с поглощением носителей заряда объемом диэлектрика: часть носителей заряда встречает на своем пути дефекты решетки, захватывающие и удерживающие носители. Со временем, когда все дефекты заполнятся носителями, ток абсорбции прекращается и остается только не изменяющийся во времени сквозной ток Iскв, который обусловлен прохождением носителей заряда от одного электрода до другого и равен сумме объемного и поверхностного сквозных токов:

 

(2.6)

 

Ток абсорбции приводит к накоплению носителей заряда в определенных местах диэлектрика - дефектах решетки, границах раздела, неоднородностях. Вследствие появления объемных зарядов распределение напряженности поля в диэлектрике становится неоднородным.

 

2.2.1. Электропроводность твердых диэлектриков. ▲

 

Электропроводность твердых диэлектриков чаще всего носит не электронный, а ионный характер. Это связано с тем, что ширина запрещенной

зоны в диэлектриках DWg > > kT и лишь ничтожное количество электронов может отрываться от своих атомов за счет теплового движения. Ионы же часто оказываются слабо связанными в узлах решетки, и энергия W, необходимая для их срыва, сравнима с kT. Поэтому, несмотря на меньшую подвижность ионов по сравнению с подвижностью электронов, ионная проводимость оказывается больше электронной за счет большей концентрации свободных ионов:

 

, (2.7)

 

где q – заряд иона, е – заряд электрона.

Носителями заряда в диэлектриках обычно оказываются ионы малых размеров, подвижность которых выше.

Удельная электрическая проводимость твердых диэлектриков (см/м), как и полупроводников, растет с ростом температуры по экспоненциальному закону:

 

. (2.8)

 

где µ - подвижность, м² /(В*с), n – число носителей в единице объема (концентрация), q – заряд носителя, W – энергия активации.

В широком диапазоне температур зависимость логарифма удельной проводимости γ от обратной величины абсолютной температуры Т должна состоять из двух прямолинейных участков с различными значениями угла наклона к оси абцисс.

При температуре выше точки излома А электропроводность определяется в основном собственными дефектами – это область высокотемпературной, или собственной электропроводности. Ниже излома, в области низких температур, зависимость более пологая.

 

 

Рис. 2.4. Зависимость удельной электрической проводимости от температуры.

 

Однако зависимость g (Т) часто обусловлена не экспоненциальным ростом концентрации носителей, как в полупроводниках, а ростом подвижности.

Обычно в диэлектрике имеется несколько видов носителей заряда. Например, кроме ионов основного вещества могут иметься слабо связанные ионы примесей. В этом случае удельная проводимость складывается из с обственной и примесной.

Ионная электропроводность сопровождается переносом вещества: положительные ионы движутся к катоду, а отрицательные к аноду. Электролиз особенно ярко выражен при повышенных температурах, когда r мало, и приложении высоких постоянных напряжений. По выделившемуся на электродах веществу можно определить характер носителей заряда. У диэлектриков с чисто ионным характером электропроводности строго выполняется закон Фарадея пропорциональности между количеством пропущенного электричества и количеством выделившихся веществ.

Некоторые диэлектрики обладают электронной или дырочной электропроводностью. Однако носителями часто являются электроны не основного вещества, а примесей и дефектов.

В кристаллах удельное сопротивление зависит от направления. Вдоль оптической оси оно ниже, чем поперек этой оси.

 

2.2.2. Электропроводность жидкостей. ▲

 

Электропроводность жидкостей обусловлена ионами, образующимися при диссоциации молекул самой жидкости или ее примесей. В связи с увеличением энергии хаотического теплового движения молекул степень ионизации и концентрация ионов растет с повышением температуры по экспоненциальному закону:

, (2.9)

 

где W- энергия диссоциации. Отсюда удельная проводимость:

 

. (2.10)

 

Здесь m+ и m – подвижности положительных и отрицательных ионов; q - заряд иона; n и А – константы.

Диссоциация молекул легче происходит в полярных жидкостях, чем в неполярных. Ввиду того, что энергия диссоциации полярных жидкостей значительно меньше, чем неполярных, их удельная проводимость существенно выше. Так, для сильно полярных жидкостей (дистиллированная вода, этиловый спирт) r = 103 - 105 Ом*м, для слабо полярных (касторовое масло) r = 108 - 1010 Ом*м, для неполярных (бензол, трансформаторное масло) r > 1010 - 1013 Ом× м. В неполярных жидкостях молекулы основного вещества практически не диссоциируют на ионы, и их электропроводность обусловлена примесями, особенно полярных веществ.

В жидкостях с примесями иногда наблюдается молионная электропроводность, характерная для коллоидных систем, которые представляют собой тесную смесь двух веществ (фаз), причем одна фаза в виде мелких частиц равномерно взвешена в другой. Наиболее часто встречаются в электроизоляционной технике эмульсии и суспензии. Стабильность эмульсий и суспензий объясняется наличием на поверхности частиц дисперсной фазы электрических зарядов. Такие заряженные частицы дисперсной фазы и называют молионами. При наложении на коллоидную систему электрического поля молионы приходят в движение, что выражается в виде электрофореза.

 

2.2.3 Электропроводность газов. ▲

 

Электропроводность газов обусловлена наличием в них некоторого количества заряженных частиц. В нормальных условиях число заряженных частиц в 1 м3 воздуха не превышает нескольких десятков миллионов.

Происхождение носителей заряда в газах объясняется различными факторами: радиоактивным излучением Земли; радиацией, проникающей из космического пространства; излучением Солнца; иногда тепловым движением молекул и т. п. При поглощении энергии бомбардирующей частицы молекула газа теряет электрон и превращается в положительный ион. Высвобождаемый при этом электрон «прилипает» к нейтральной молекуле, образуя отрицательный ион.

Заряженные ионы, так же как и окружающие их, не имеющие электрического заряда, молекулы газа, совершают беспорядочные тепловые движения, и вследствие диффузии происходит выравнивание концентрации ионов в газе. При встрече положительных и отрицательных ионов происходит их рекомбинация.

В стационарном случае, когда число ионов не изменяется с течением времени, между процессами генерации и рекомбинации устанавливается динамическое равновесие, при котором число положительных ионов в газе равно числу отрицательных ионов N+ = N, а число рекомбинирующих ионов постоянно Nр = a N+ N, где a - коэффициент рекомбинации ионов газа [м3/с].

При наложении внешнего электрического поля положительные и отрицательные ионы, преодолевая сопротивление трения газа, будут двигаться между электродами со скоростями u+ = m+E и u = mE, где m+ и m - подвижности положительного и отрицательного ионов.

Если напряженность поля Е очень мала, так что протекающий ток не меняет концентрации ионов в газе, плотность тока

 

(2.11)

 

Принимая во внимание, что J = gЕ, получаем выражение для удельной проводимости газа:

(2.12)

 

При малых значениях напряженности внешнего электрического поля, когда Nр, a, m+ и m можно считать постоянными, плотность тока в газе прямо пропорциональна напряженности приложенного поля, т. е. в этих условиях соблюдается закон Ома.

Однако при дальнейшем возрастании напряженности поля закон Ома не выполняется. В этом случае все ионы будут уходить на электроды не рекомбинируя. Так как число ионов в газе при малых полях ограничена и не зависит от напряжения, то дальнейшее повышение напряжения не вызывает увеличения тока. Этот ток называют током насыщения. Значение плотности тока насыщения в газах не превышает 10-16 — 10-14 А/м2.

При дальнейшем повышении Е до значений, близких к электрической прочности Епр, возникает возможность генерации заряженных частиц в электрическом поле из-за появления ударной ионизации. В предпробивных полях создаются условия для возникновения «лавин», и ток очень резко возрастает, пока при Ј = Епр не наступает пробой газа.

 

2.2.4. Поверхностная электропроводность диэлектриков. ▲

 

Поверхностная электропроводность диэлектриков создается благода­ря неизбежному увлажнению, окислению, загрязнению и т. д. поверхностных слоев электрической изоляции. Поэтому диэлектрик характеризуется значением удельного поверхностного сопротивления ρ s:

 

, (2.13)

 

где h - расстояние между параллельными друг другу кромками электродов, b -длина электродов.

У проводниковых материалов поверхностные токи малы по сравнению с объемными, поэтому у этих материалов поверхностное сопротивление не учитывается. Не определяется поверхностное сопротивление и у жидких и газообразных диэлектриков. Не имеет смысла определение поверхностного сопротивления и у тонких слоев твердых диэлектриков так как в этом случае практически невозможно отделить поверхностные токи утечки от объемных.

Характер зависимости rS диэлектриков от различных факторов (температуры, влажности, величины приложенного напряжения) сходен с характером изменения r. Однако при изменениях влажности окружающей среды значения rS изменяются быстрее, чем значения r.

Рост поверхностной проводимости для растворимых диэлектриков объясняется наличием на их поверхности ионов, а для пористых - влаги. Кроме того, rS падает при загрязнении поверхности диэлектрика.

Удельная поверхностная проводимость тем ниже, чем меньше полярность вещества и чем чище поверхность диэлектрика. Причем наличие загрязнений на поверхности относительно мало сказывается на удельной поверхностной проводимости гидрофобных диэлектриков и сильно влияет на проводимость гидрофильных диэлектриков.

К первым в основном относятся неполярные диэлектрики, чистая поверхность которых не смачивается водой, ко вторым – полярные и ионные диэлектрики со смачиваемой поверхностью. Наиболее значительное увеличение удельной поверхностной проводимости имеет место у полярных диэлектриков, частично растворимых в воде, у которых на поверхности образуется пленка электролита. Кроме того, к поверхности полярных диэлектриков могут прилипать различные загрязнения, также приводящие к росту поверхностной проводимости. Высокой поверхностной проводимостью обладают и объемно-пористые материалы, так как процесс поглощения влаги в глубь материала стимулирует также и образование ее пленки на поверхности диэлектрика. С целью уменьшения поверхностной проводимости применяют различные приемы очистки поверхности – промывку спиртом, водой с последующей просушкой и т. п. Наиболее эффективной очисткой поверхности достаточно нагревостойкого изделия, не впитывающего воду, является продолжительное кипячение в дистиллированной воде. Покрытие керамики и стекол пленками кремнийорганических лаков способствует сохранению низкой поверхностной проводимости изделий во влажной среде.

 

2.3. Потери в диэлектриках. ▲

 

Диэлектрическими потерями - энергия, рассеиваемая в единицу времени в диэлектрике при воздействии на него электрического поля и вызывающую нагрев диэлектрика.

Потери энергии в диэлектриках наблюдаются как при переменном напряжении, так и при постоянном, поскольку в материале обнаруживаются сквозной ток, обусловленный проводимостью. При постоянном напряжении, когда нет периодической поляризации, качество материала характеризуется значениями удельных объемного и поверхностного сопротивления. При переменном напряжении необходимо использовать какую-то другую характеристику качества материала, так как в этом случае, кроме сквозной электропроводимости, возникает ряд добавочных причин, вызывающих потери энергии в диэлектрике. Для характеристики способности диэлектрика рассеивать энергию в электрическом поле пользуются углом диэлектрических потерь, а также tg этого угла.

Углом диэлектрических потерь называется угол, дополняющий до 90° угол сдвига фаз j между I и U в емкостной цепи. В случае идеального диэлектрика I в такой цепи будет опережать вектор U на 90°, при этом угол d будет равен нулю. Чем больше рассеиваемая в диэлектрике мощность, переходящая в тепло, тем меньше угол сдвига фаз j и тем больше угол диэлектрических потерь d и его функция tg j.

Природа диэлектрических потерь в электроизоляционных материалах различна в зависимости от агрегатного состояния вещества.

Диэлектрические потери могут обуславливаться сквозным током или активными составляющими поляризационных токов. При изучении диэлектрических потерь, непосредственно связанных с поляризацией диэлектрика, можно изобразить это явление в виде кривых, представляющих зависимость электрического заряда на обкладках конденсатора с данным диэлектриком от приложенного к конденсатору напряжения. При отсутствии потерь, вызываемых явлением поляризации, заряд линейно зависит от напряжения и такой диэлектрик называется линейным (рис.2.5, а).

Если в линейном диэлектрике имеет место замедленная поляризация, связанная с потерями энергии, то кривая зависимости заряда от напряжения приобретает вид эллипса (рис.2.5, б).

 

 

Рис.2.5. Зависимость заряда от напряжения для линейного

диэлектрика без потерь (а), с потерями (б).

 

Площадь этого эллипса пропорциональна количеству энергии, которая поглощается диэлектриком за один период изменения U.

В случае нелинейного диэлектрика - сегнетоэлектрика, кривая зависимости заряда от напряжения приобретает вид петли такого же характера, как петля гистерезиса из магнитных материалов. В этом случае площадь петли пропорциональна потерям энергии за один период.

В технических электроизоляционных материалах, помимо потерь сквозной электропроводимости и потерь от замедленной поляризации, возникают электрические потери, которые сильно влияют на электрические свойства диэлектриков. Эти потери вызываются наличием изолированных друг от друга посторонних проводящих или полупроводящих включений углерода, окислов железа и т.д. и значительны даже при малом содержании таких примесей в электроизоляционном материале. В случае высоких напряжений U, потери в диэлектрике возникают вследствие ионизации газовых включений внутри диэлектриков, особенно интенсивно происходящей при высоких частотах.

Рассмотрим схему, эквивалентную конденсатору с диэлектриком, обладающим потерями, находящемуся в цепи переменного напряжения U. Последовательная и параллельная схема представлены на рис.2.6, там же даны соответствующие диаграммы токов и напряжений.

 

 

 

Рис.2.6. Векторные диаграммы и эквивалентные схемы диэлектрика с

потерями: а – параллельная; б –последовательная.

 

Обе схемы эквивалентны друг другу, если при равенстве полных сопротивлений z1 = z2 = z равны их активные и реактивные составляющие. Это условие будет соблюдено, если углы сдвига тока относительно напряжения j равны и значения активной мощности одинаковы.

Для последовательной схемы (рис. 2.6 а):

(2.14)

 

(2.15)

Для параллельной схемы (рис. 2.6 б):

 

(2.16)

 

 

, (2.17)

 

.

Находим соотношения между Cp и Cs и между r и R:

, (2.18 а)

. (2.18 б)

 

Для доброкачественных диэлектриков можно пренебречь значением tg2d по сравнению с единицей в формуле и рассчитав Cp» Cs» C Выражение для Р, рассеиваемой в диэлектрике, в этом случае будут одинаковы для обеих схем:

, (2.19)

 

где Ра измеряется в (Вт), U - в (В), w - в (с-1), С - в фарадах (Ф).

R в параллельной схеме, как следует из выражения , во много раз больше r.

Выражение для удельных диэлектрических потерь, т.е. Р, рассматриваемой в единице объема диэлектрика, имеет вид:

 

, (2.20)

 

где p - удельные потери (Вт/м3);

w - 2pf - угловая частота (с-1);

Е - напряженность электрического поля(В/м).

Действительно, емкость между противоположными гранями куба со стороной 1 м будет С1 = e0e, реактивная составляющая удельной проводимости:

; (2.21)

 

а активная составляющая

. (2.22)

 

Следует отметить, что емкость диэлектрика с большими потерями становится совершенно условной величиной, зависящей от выбора той или иной эквивалентной схемы. Отсюда и диэлектрическая проницаемость материала с большими потерями при переменном напряжении также условно. Угол диэлектрических потерь от выбора схемы не зависит.

Рассматривая формулы и можно видеть, что диэлектрические потери приобретают серьезное значение для материалов, используемых в установках высокого U, в высокочастотной аппаратуре и особенно в высоковольтных высокочастотных устройствах, поскольку величина диэлектрических потерь пропорционально квадрату приложенного к диэлектрику U и частоте поля. Материалы, предназначаемые для применения в указанных условиях, должны отличаться малым значением угла потерь и диэлектрической проницаемостью, т.к. в противном случае мощность, рассеиваемая в диэлектрике, может стать недопустимо большой.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.