Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Движение газа в окрестностях тороидального вихря






 

Для линейного вихря бесконечной длины убывание скорости движения среды происходит пропорционально первой степени расстояния. Если вблизи друг друга вращаются в противоположных направлениях две вихревые нити бесконечной длины, то в каждой точке пространства происходит векторное вычитание скоростей и убывание общей скорости перемещения среды пропорционально уже второй степени расстояния. Но если нити не бесконечны, а представляют собой тороидальное кольцо, то убывание скорости движения среды происходит в первом приближении пропорционально третьей степени расстояния и описывается законом Био-Савара

где Гт – значение циркуляции тангенциальной скорости на поверхности вихря; r – радиус-вектор вихревой нити L; ρ – радиус-вектор точки, в которой рассматривается скорость. Составляющие скорости по осям координат имеют вид:

В отличие от тороидального движения газа, которое передается за счет давления со стороны набегающих элементов газа, кольцевое движение передается от слоя к слою в основном за счет вязкости газа. Если перепад скоростей велик, что может иметь в пограничном слое, то соответственно велики и перепады температуры и значительно уменьшена вязкость. В этом случае кольцевое движение не будет передаваться внешним слоям, такое положение вихря будет устойчивым, и тороид будет вращаться в этом пограничном слое, как в подшипнике скольжения, не передавая далее своего движения.

Сам тороидальный вихрь, обладающий кольцевым движением, оказывается винтовым вихрем, а его окрестности охвачены винтовым движением с переменным винтовым фактором, поскольку соотношение скоростей тороидального и кольцевого движений меняется в зависимости от расстояния от вихря по-разному: тороидальное движение убывает пропорционально кубу, а кольцевое квадрату расстояния от центра вихря.

Газовый вихрь при своем создании наращивает энергию за счет сжатия тела давлением окружающего вихрь газа, а затем начинает растрачивать ее из-за вязкости этого газа. Такой процесс хорошо виден на примере кольцевых вихрей от«ящика Вуда»:

На первой стадии, длящейся доли секунды, диаметр тороида уменьшается, на этой стадии тороид увеличивает свою энергию за счет сжатия его внешним давлением газа. На следующей, второй, стадии тороид увеличивается. Теперь он теряет энергию за счет вязкости (диффузия вихря). Эта вторая стадия длится дольше, чем первая. Затем наступает третья стадия, на которой тороидальное кольцо начинает тормозиться и распухать, а затем разваливаться.

Под воздействием градиента давлений весь газ начинает смещаться в сторону тороидального вихря и поглощаться им, за счет чего масса вихря и его объем непрерывно увеличиваются. Поскольку момент количества движения как тороидального, так и кольцевого движений сохраняется, то скорость движения газа на поверхности тороида уменьшается, соответственно уменьшается и градиент скорости, температура поверхности тороида увеличивается. Это приводит к тому, что вязкость газа на поверхности тороида увеличивается, и площадь поверхности тоже увеличивается, поэтому увеличивается и отдача энергии движения струй газа во внешнюю среду. Вихрь увеличивает свои размеры и энергоотдачу. Его устойчивость уменьшается, и с течением времени вихрь диффундирует и прекращает свое существование.

К оглавлению

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.