Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Р < 0,01 4 страница






Интригующие (и, безусловно, требующие дополнительной эмпири­ческой проверки) результаты дают эксперименты, в которых проверяе­мое правило является абстрактным, но включает в явном виде отрица­ние следствия, например, в следующей форме: «Если на одной стороне есть буква Е, то на другой стороне нет цифры 4». При этом наблюдается обращение типичных результатов: улучшение решения задачи выбора в абстрактном варианте и ухудшение в конкретном! В самом предвари­тельном плане можно предположить, что обработка фрейма-отрицания «неверно, что...» выполняет роль своеобразного метаоператора ОТРИ­ЦАНИЯ, активирующего установку на поиск контрпримеров в абстракт­ном варианте задачи. В то же время в более конкретном варианте при­сутствие такого метаоператора может приводить к интерференции с глобальной метапроцедурой ПРЕДСТАВЛИВАНИЕ, ведь представить всегда несколько проще то, «что есть», а не то, «чего нет» (Величков-ский, 19866).

Особую область, в которой наблюдается заметное улучшение наших способностей решать задачу выбора Уэйзена, образуют контексты обяза­тельства, обещания или разрешения. Речь идет, очевидно, о так называе­мых речевых актах, изучаемых коммуникативной прагматикой (см. 7.1.2 и 7.4.1). Когда задача выбора сформулирована так, что позволяет предпо­ложить один из подобных контекстов социального взаимодействия меж­ду людьми, испытуемые неожиданно начинают значительно более кри­тически, а следовательно, и более эффективно проверять соответствие заданного правила действительности. Согласно предложенной К. Холи-уоком и П. Ченгом (Holyoak & Cheng, 1995) теории прагматических схем вывода, психологические механизмы умозаключений развиваются в кон­тексте целей наших социальных действий. Это в общем виде объясняет изменение эффективности вывода при сохранении его логической осно­вы. Интересно, что выраженное улучшение имеет место даже в достаточ­но абстрактном варианте задачи. Так, в модификации «Если некто соби­рается совершить действие А, то он должен сначала выполнить условие Р» задачу правильно решают 61% испытуемых, а вне подобного условно-прагматического контекста — только 19%.

Популярными становятся идеи похожего подхода, получившего громкое название эволюционной психологии. Основатели этого подхода, калифорнийские исследователи Лида Космидес и Джон Туби (Cosmides & Tooby, 1994) придерживаются радикальной версии концепции моду­лярной организации психики (см. 2.3.2). По их мнению, подлинные воз­можности интеллекта могут быть установлены только в некоторых узких

областях жизнедеятельности, а именно там, где они имеют значение для 224


выживания и социобиологической успешности. Важнейшей такой обла­стью является сфера отношений обмена и взаимных услуг, регулируемая фундаментальным принципом социального договора: «Если я делаю что-то для тебя, ты должен сделать нечто эквивалентное для меня». В подобных, типичных для социальной жизни Homo sapiens ситуациях наша интеллек­туальная активность направлена на отслеживание того, не имеем ли мы дело с человеком, пользующимся нашими ресурсами, но не дающим вза­мен ничего равноценного и, тем самым, нарушающим принцип соци­ального договора.

В чем все-таки причина возникающего в социальном контексте улучшения проверки правил путем поиска опровергающих примеров — может быть, просто в высокой степени знакомости подобных ситуа­ций? По мнению Космидес и Туби, мы используем для решения таких задач нечто вроде специализированного врожденного модуля обработ­ки социальной информации, называемого ими «алгоритмом обнаруже­ния обманщика». Высокая эффективность проверки правил, попадающих в категорию «социальный договор», была многократно показана в пос­ледние годы на сложном и незнакомом (с точки зрения имен участников и названий объектов обмена) испытуемым этнографическом материале. Упоминание эволюционного аспекта становления когнитивных процессов приобретает в новейших исследованиях мышления все более важное значение. Берлинский психолог Герд Гигеренцер, разделяющий взгляды «эволюционистов», нашел для этого подхода возможность серь­езного практического применения. В начале этого раздела мы упомина­ли трудности работы с вероятностями, особенно в случае необходимости использования теоремы Байеса. Самым известным примером допускае­мых при этом ошибок является рассмотренная выше задача маммогра­фии (см. 8.2.1). По мнению Гигеренцера, специфические трудности по­нимания условных вероятностей обусловлены тем, что вероятностный формат представления данных получил распространение лишь в послед­ние 150—200 лет и наше мышление не адаптировалось к нему. В контек­сте эволюционного развития тысячелетий значительно более привычна работа с конкретными случаями, или, как их называет Гигеренцер, есте­ственными частотами.

В самом деле, если типичные задачи на условные вероятности пе­реформулировать в терминах естественных частот, то испытуемые, до­пускавшие ранее серьезные ошибки, неожиданно начинают решать их значительно более успешно. Примером может служить следующий ва­риант иначе сформулированной, но идентичной в отношении числовых параметров задачи маммографии:

«Пусть имеется группа из 1000 женщин, 10 из которых больны раком груди. Применение диагностического теста, называемого маммографией, ведет к положительному результату у 8 из числа

больных и у 99 здоровых женщин. Как велика доля женщин с


раком груди среди всех женщин с положительной маммограм-мой?»

Такое описание задачи позволяет прежде всего легко, путем сложе­ния 8 и 99, найти общее количество женщин с положительной маммо-граммой. На втором и последнем этапе решения задачи нужно, конеч­но, еще попытаться разделить 8 на 107 (то есть 8 + 99), но практически всем сразу становится ясно, что эта величина меньше 8%, то есть никак не может быть близкой к 80%.

Аналогичное улучшение понимания наблюдается при переходе к естественным частотам и в случае некоторых других задач, решение ко­торых обычно сопровождается возникновением «когнитивных иллю­зий». Например, получаемые с помощью этого подхода данные показы­вают очевидным для каждого образом, что вероятность действительного заражения синдромом приобретенного иммунодефицита (СПИДа) при положительном исходе соответствующего диагностического теста ока­зывается равной примерно 50%, то есть остается серьезный шанс на от­сутствие заболевания. Этот вывод оказался неожиданным не только для обычных испытуемых, но и для тех медицинских работников, в прямые обязанности которых входило консультирование людей, обращающихся за помощью в связи с возможностью этого заболевания. Гигеренцер и его коллеги предлагают поэтому срочно ввести методы интерпретации и оценки диагностических ситуаций в терминах естественных частот в курсы обучения будущих врачей, а также юристов (Gigerenzer, 2001).

В дипломной работе, выполненной под нашим руководством Анкой Гош (Gö sch, 2003), был предпринят сравнительный анализ решения за­дачи маммографии и описанной в начале данного раздела задачи с кол­пачками (Monty Hall Dilemma) в зависимости от нескольких различных вариантов их формулирования. Этот анализ выявил определенные раз­личия между этими задачами и одновременно их общее отличие от зада­чи выбора Уэйзена. Если в случае последней критический социальный контекст («поиск обманщика») улучшает решение, то для задачи с кол­пачками именно недоверие испытуемых к искренности экспериментато­ра (ожидание подвоха) служит одним из основных препятствий для рас­смотрения ситуации с точки зрения ее абстрактной математической структуры. Переход к частотам был эффективен только в случае задачи маммографии. Для задачи с колпачками критически важными оказались другие условия. Так, склонность испытуемых к рассмотрению математи­ческой структуры ситуации несколько возрастала, если эта задача фор­мулировалась, так сказать, «изнутри», из перспективы ее восприятия эк­спериментатором. Иными словами, подобно перцептивным иллюзиям, разные «когнитивные иллюзии», несомненно, имеют различные причи­ны. Переход к частотам и в особенности введение условий задачи в со­циальный контекст не являются универсальными средствами от всех возникающих при попытках применения логики или теории вероятнос­тей затруднений. 226


Таблица 8.2. Время реакции ответов (в сек) испытуемых на вопросы о возможных и не­обходимых вариантах поведения (по: Bell & Johnson-Laird, 1998)

 

Ответы испытуемого Характер вопросов «возможность» «необходимость»
ДА 18, 3 27, 5
НЕТ 22, 4 23, 2

Хотя взгляды представителей «эволюционной психологии» инте­ресны в теоретическом отношении и, сверх того, практически значимы, не все авторы считают ссылку на эволюционную адаптацию достаточ­ной для полноценного объяснения обнаруженных эффектов. Во-пер­вых, общей проблемой эволюционных объяснений является то, что они не могут быть экспериментально доказаны или опровергнуты. Во-вто­рых, судя по всему, иногда удается найти и более простые объяснения. Так, для Джонсон-Лэйрдa (Johnson-Laird, 1999) улучшение результатов, достигаемое в ряде задач с помощью формата естественных частот, объясняется тем, что в этом случае облегчается применение ментальных моделей. Теория ментальных моделей позволяет также более детально проанализировать механизмы, лежащие в основе прагматических схем, в частности, таких важных для произвольной регуляции поведения ин-тенционально-волевых установок, как МОГУ и ДОЛЖЕН (см. 8.1.3).

В самом деле, для конструирования представления о чем-то воз­можном — модальность «могу» — в принципе достаточно построения единственной подтверждающей модели. Иначе обстоит дело с модаль­ностями «должно» и «необходимо». Чтобы показать, что различные альтернативы, кроме одной, невозможны, должны быть построены (или, по крайней мере, обозначены) модели всех возможных ситуаций. В тер­минологии современной логики, речь идет о моделях множества «воз­можных миров». В. Белл и Ф. Джонсон-Лэйрд (Bell & Johnson-Laird, 1998) предположили поэтому, что в задачах на умозаключения положи­тельные ответы на вопросы о возможности некоторого положения дел в мире или формы поведения (поступка) должны даваться быстрее, чем отрицательные ответы. Напротив, в случае вопросов о необходимости («долженствовании») относительно более быстрыми должны быть отри­цательные ответы — ведь для опровержения необходимости достаточно одного примера, тогда как ее подтверждение связано с построением и проверкой целого ряда ментальных моделей.

Эти предсказания теории ментальных моделей подтверждаются эк­спериментально (см. табл. 8.2)29. Интересно, что, согласно этой точке зрения, понимание и подтверждение возможного в целом оказывается


29 Этот результат нетривиален еще и потому, что в хронометрических экспериментах отрицательные ответы требуют, как правило, больше времени, чем положительные.



когнитивно значительно более простым действием, которое требует меньшего количества умственных усилий, чем понимание необходимо­го и должного В самом деле, понимание необходимости требует почти в полтора раза больше времени. Столь значительная разница во времени реакции, по-видимому, свидетельствует о дополнительной мыслитель­ной активности, осуществляемой за счет использования ресурсов рабо­чей памяти Несомненно, что эти результаты, выявляющие когнитивные причины трудностей в принятии некоторых, казалось бы, совсем про­стых правил поведения, имеют не только психологическое, но также со­циокультурное значение

Данные о специализации мышления позволяют иначе поставить вопрос о причинах когнитивных иллюзий. В частности, обнаруженные первоначально в абстрактных вариантах задачи выбора ошибки не обя­зательно свидетельствуют об алогичности мышления. Логические связ­ки имеют в естественном языке прагматический оттенок, отсутствую­щий в формальной логике. Когда импликация «Если А, то В» задана на условном материале, испытуемые могут ошибочно считать ее обрати­мой30. Более того, из-за невозможности доказательства правильности индуктивных умозаключений практически приемлемым для них часто оказывается поиск именно подтверждающих примеров. Рассмотрим гипотетическое утверждение «Все лебеди — белые». Поиск контрприме­ров (для их обнаружения пришлось бы добраться до Австралии, где ле­беди — черные), быстро мог бы стать занятием, слишком дорогостоящим для решения повседневных задач. Поэтому такое утверждение разумно принять как первое приближение, хотя оно и сделано на основании ог­раниченного числа подтверждающих примеров.

В зависимости от сферы деятельности существуют различные ме­ханизмы и, соответственно, разные критерии разумности познаватель­ной активности. Ниже мы рассмотрим альтернативное представление о рациональности, разделяющее практически приемлемые (возможные) и теоретически нормативные, но практически невозможные решения (см. 8.4.1). Вместе с тем, такое разделение не должно быть слишком строгим. В науке односторонняя установка на подтверждение рано или поздно корректируется если не самим автором теории, то его часто за­ранее скептически настроенными коллегами. Сомнение столь важно для научного мышления, поскольку любое обобщение справедливо лишь в той мере, в какой для него нет контрпримера. Важность поиска

30 Импликация — не единственная логическая операция, аналоги которой в естествен­ном языке имеют несколько другое значение Примером может служить союз «или», ис­пользование которого, в отличие от логической дизъюнкции, означает не только то, что по крайней мере одна из возможностей имеет место, но и то, что говорящий не знает, какая именно Эта особенность связана с коммуникативной прагматикой (см 7 4 1) если бы говорящий знал, какая из возможностей реализуется в действительности, он бы так и сказал, придав своему высказыванию бульшую информативность ценой меньших уси­лий Следовательно, предполагая искренность коммуникативных намерений говоряще-228 го, необходимо допустить, что он этого просто не знает (Падучева, 1985)


контрпримеров подчеркивается в принципе фальсифицируемости Кар­ла Поппера (см. 1.4.2). Рефлексивная установка, связанная с учетом кон­фликтных интересов действующих лиц, часто помогает нам и при реше­нии практических задач, таких как покупка квартиры или автомобиля. Балансирование между безусловно возможным и безусловно невозмож­ным при принятии решений и есть настоящее мышление в действии.

8.3 Процессы решения задач

8.3.1 Решение малых мыслительных задач

Хотя первоначально представители информационного подхода, а затем и когнитивной психологии предполагали добиться быстрых успехов в области изучения и моделирования мышления, реальные достижения оказались весьма скромными. Общее обсуждение процессов решения задач с позиций когнитивной психологии было дано Дж. Грино (Greeno, 1973). Согласно его определению, в случае решения задач «речь идет о нахождении способов трансформации исходной ситуации (или задан­ных переменных) в желаемую ситуацию (или неизвестные перемен­ные)». Это понимание разделяют и другие авторы, в частности А. Нью-элл и Г. Саймон, монография которых «Решение задач человеком» (Newell & Simon, 1972) длительное время считалась наиболее авторитет­ным руководством в данной области. Конечно, это определение недоста­точно специфично, так что под ним могли бы подписаться представите­ли всех направлений, так или иначе связанных с изучением мышления. При более детальном рассмотрении работ Дж. Грино, А. Ньюэлла, Г. Сай­мона и их коллег вновь вырисовываются очертания вычислительного устройства и его программного обеспечения.

Анализируя процесс решения задачи, Грино выделяет пять после­
довательных стадий: 1) чтение текста задачи, 2) интерпретация понятий,
3) извлечение релевантной информации, 4) создание плана решения,
5) выполнение вычислительных операций. Эта модель становится более
содержательной, когда Дж. Грино детально рассматривает стадию извле­
чения релевантной информации, выделяя в зависимости от характера
этих процессов несколько типов задач: одни задачи требуют преимуще­
ственного извлечения правил оперирования (то есть процедурного зна­
ния), другие — хранящихся в памяти пропозиций (декларативного зна­
ния), третьи — дополнительной трансформации уже имеющихся
знаний (то есть применения метапроцедур). Значительная часть усилий
когнитивных психологов и специалистов по искусственному интеллек­
ту была направлена первоначально на создание компьютерных моделей
мыслительных процессов, типа глобальных когнитивных моделей, рас­
смотренных нами в начале этой главы. 229



 


 



 


Рис. 8.3. Ханойская башня: А. Исходное положение дисков; Б. Алгоритм решения зада­чи для случая трех дисков.



Особой популярностью при моделировании мышления длительное время пользовались достаточно однотипные задачи на перемещения: анаграммы, задача переливания жидкости, задачи перевозки ревнивых мужей и их жен, миссионеров и каннибалов, проблема монстров и т.д. На рис. 8.3 показан вариант одной из наиболее известных из числа та­ких задач, получившей название «Ханойская башня». Задача состоит в том, чтобы переместить фишки с левого на правый стержень. При этом каждый раз можно брать только одну фишку, а класть ее можно только на фишку больших размеров. При оптимальной стратегии эта задача ре­шается за 2" — 1 шагов, где л — число фишек. Детальный психологичес­кий анализ решения этой задачи проводился в последние десятилетия многими авторами, причем иногда ее используют и в целях нейропсихо-логической диагностики (в несколько упрощенных вариантах, извест­ных как «Лондонская башня» и «Торонтская башня»).

Возможности машинных программ также часто проверяются на за­дачах этого типа. Г. Саймон и Дж. Хайес (Simon & Hayes, 1976) проана­лизировали для тестирования своей программы протоколы контрольной группы — людей, процесс решения задачи которыми прослеживался с по­мощью классической методики рассуждения вслух Дункера. Проведен­ный анализ показал, что испытуемые беспокоились о правильном пони­мании условий, часто просили дать им дополнительные разъяснения и


проверяли допустимость тех или иных возможных шагов31. Надо сказать, что именно эти моменты в работе программы представлены не были. Эквивалентность результатов, очевидно, еще не означает совпадения процессов. В целом ориентированный на формальное моделирование подход привел к успехам главным образом в случае тех задач, где относи­тельно однозначно определены условия, а решение может быть достиг­нуто с помощью выполнения последовательных операций над дискрет­ными символами.

Было бы большой ошибкой, конечно, недооценивать потенциал символьного подхода. Все более быстрый алгоритмический перебор ва­риантов — основа эффективности компьютерных систем, позволившая им в последнее время более чем успешно соревноваться с человеком даже в таких традиционных областях интеллектуальных достижений, как шахматы (см. 8.3.3). Человек должен решать задачи иначе, опираясь на эвристические методы. Не случайно отклонение от механического перебора считается одним из критериев действительно разумного реше­ния. В популярной истории математики хорошо известен рассказ о юном Гауссе, нашедшем новое решение некоторой сравнительно лег­кой, но чрезвычайно скучной задачи. Согласно этой истории (или ле­генде), учитель, чтобы освободить себе какое-то время, дал школьникам задачу найти сумму всех чисел от 1 до 100. К его удивлению, уже через пару минут один из мальчиков — это был Карл Гаусс — сообщил, что за­дача решена. В отличие от прямого решения 1 + 2 + 3 и т.д. он выбрал непрямой путь, начав суммирование одновременно с двух концов ряда:

(1 + 100) + (2 + 99) + (3 + 98)... = 101 χ 50 = 505032.

Определенные способности к манипуляции пространственными структурами, поиску решения «в обход», а не «в лоб», предполагаются множеством так называемых малых мыслительных задач, широко приме­няемых в психологии для иллюстрации закономерностей мышления. Рассмотрим следующую задачу, требующую известного переосмысления стратегии решения (задача упоминается в книге А.Р. Лурия 1979 года, посвященной мнемонисту Ш.). Пусть в университетской библиотеке на полке рядом стоят два тома руководства по когнитивной науке. Каждый

31 Подобные исследования справедливо критикуются за опору на рассуждение вслух.
Согласно распространенной точке зрения, самоотчеты отражают лишь гипотезы, кото­
рые конструирует субъект, пытаясь дать причинно-следственное объяснение своего по­
ведения (см. 4.4, 3). Параллельный анализ самоотчетов и движений глаз испытуемых сви­
детельствует о том, что лишь часть активности, связанной с процессами решения задач,
находит отражение в вербальных отчетах. Серьезная проблема состоит также в интерфе­
ренции рассуждения вслух с процессами самого решения (см. 1.1.3).

32 Наглядная интерпретация этой же задачи состоит в ее представливании как выклады­
вания поверхности, состоящей из увеличивающихся на единицу рядов квадратов. Такая
поверхность будет иметь форму прямоугольного треугольника. Удвоив число квадратов,
можно увидеть, что искомое решение эквивалентно нахождению половины площади пря­
моугольника со сторонами ЮОи 101. Общее аналитическое решения для подобного приме­
ра арифметической прогрессии, конечно же, выглядит следующим образом: 0, 5п ■ (п + 1). 231


том имеет объем 400 страниц. Червяк начинает работать с этим матери­алом и успевает за какое-то время продвинуться от первой страницы первого тома до последней страницы второго. Спрашивается, сколько всего страниц прогрыз червяк? Напрашивающийся сразу же ответ «800 страниц» ошибочен. Для решения нужно постараться наглядно предста­вить, как именно будут стоять оба тома на полке при их правильной ориентации. Очевидно, первая страница первого тома и последняя вто­рого будут разделены при этом только обложками. Следовательно, чер­вяк прогрызет всего лишь две страницы.

В чем специфическая трудность этой задачи? Только в том, что, ус­лышав в условиях данные о количестве страниц в сочетании с вопросом «сколько?», мы ошибочно интерпретируем эту задачу как математичес­кую. На рис. 8.4 приведены две задачи «графическо-математического» типа, решение которых мы предоставляем читателю. Эта пара задач по­зволяет проиллюстрировать феномен функциональной фиксированности, который использовался гештальтпсихологами для критики взглядов представителей вюрцбургской школы (см. 1.3.1). Дело в том, что задачи несколько отличаются принципом их решения. При этом внешне они очень похожи, поэтому возникает впечатление, что во втором случае можно просто применить старое решение, или, иначе говоря, использо­вать опирающуюся на функции памяти метапроцедуру ВОСПРОИЗВЕ­ДЕНИЕ, тогда как необходимыми являются ПОНИМАНИЕ и ВАРЬИ­РОВАНИЕ с одновременным подавлением (метапроцедура КОНТРОЛЬ) тенденции к повторению. В результате «фиксированности» на ошибоч­ном подходе испытуемые тратят на решение второй задачи больше вре­мени, чем на решение первой.

Рис. 8.4. Два ошибочных уравнения выложены из спичек римскими цифрами. Как ис-232 править каждое из уравнений путем перестановки только одной спички?

Большинство рассмотренных в этой главе задач решается легче, когда они даны на конкретном материале, что свидетельствует о роли процессов пространственного воображения. Для современных «эволю­ционистов» (см. 8.2.3) и сторонников концепции «телесной заземлен-ности» семантики (см. 7.4.2) это ожидаемый результат, объясняемый первичностью манипулятивной активности с предметами. Вместе с тем имеются и другие задачи, которые требуют абстрактно-символьного ОПИСАНИЯ условий. Опора на стратегию наглядного ПРЕДСТАВЛИ-ВАНИЯ может вести при этом к выраженным ошибкам.


Хорошим примером служит предложенная английским психоло­гом Ричардом Грегори задача на определение толщины сложенного 50 раз пополам листа папиросной бумаги. Большинство испытуемых пы­тается наглядно представить процесс последовательного складывания очень тонкого и очень широкого листа. В этом случае они обычно на­зывают величину порядка одного-двух метров. На самом деле в резуль­тате этой процедуры, по сути дела представляющей собой возведение двойки (с некоторым коэффициентом, равным толщине листа) в 50-ю степень, должна была бы получиться величина, сопоставимая с рассто­янием от Земли до Солнца! В другой задаче того же общего типа испы­туемым предлагается представить себе тонкий шнур, плотно опоясыва­ющий Землю по экватору, а затем добавить к нему метровый отрезок. Необходимо определить примерную величину зазора между шнуром и земной поверхностью, возникающего в результате ослабления натяже­ния шнура. Читатель может самостоятельно найти решение этой за­дачи. Заметим только, что решение ведет к игнорированию размеров опоясываемого объекта: оно является тем же самым в случае Земли и теннисного мяча.

Рассмотрим еще одну задачу, известную как задача про безумного орла. Пусть в одно и то же время из города А и города Б, расположен­ных на расстоянии 100 км друг от друга, навстречу друг другу отправля­ются два поезда. Скорость каждого из них равна 50 км/час. В момент начала движения с паровоза одного из поездов взлетает орел, который летит навстречу другому поезду со скоростью 100 км/час. Долетев до второго поезда, орел немедленно поворачивает назад и летит к первому поезду, от которого немедленно летит к другому и т.д. Спрашивается, сколько всего километров пролетит орел до момента встречи поездов? В подобной формулировке задача навязывает яркий зрительный образ летающего вперед и назад орла. Знающего математику человека это за­ставляет строить алгебраические уравнения, учитывающие постоянное сокращение расстояния между поездами. Задача решается тогда путем суммирования ряда чисел, соответствующих расстояниям, которые на каждом этапе пролетает орел. Правильное, то есть в данном случае про­стое решения состоит в... игнорировании траектории полетов орла. В са­мом деле, двигаясь с относительной скоростью 100 км/час (50 + 50) по­езда должны пройти 100 км. Следовательно, встреча произойдет через 1 час после начала движения. За это время орел пролетит точно 100 км.

Попробуем подвести некоторые предварительные итоги анализа решения задач. Уже в классической немецкой психологии мышление стало описываться как преобразование проблемной ситуации. Вюрцбур-жцы подчеркивали при этом целенаправленность и абстрактный харак­тер мыслительных операций, гештальтисты — спонтанность трансфор­маций, неожиданно ведущих к усмотрению решения, инсайту (см. 1.3.1). По сравнению с этими направлениями когнитивные исследования,



во-первых, позволили описать эвристики, используемые в процессах решения (см. 8.1.1 и 8.4.1), и, во-вторых, добавили представление о множественном выборе: выборе формата репрезентации условий и вы­боре метаопераций, используемых для трансформации этих условий. Для успешности решения, следовательно, большое значение имеет со­ответствие представления условий тем метапроцедурам, которые ис­пользуются для достижения решения.

Еще один существенный результат исследований последних лет со­стоит в выявлении коммуникативной природы мышления и, соответствен­но, многих возникающих при решении задач затруднений. В особеннос­ти малые мыслительные задачи, примеры которых были приведены на предыдущих страницах, специально сконструированы так, чтобы вво­дить читателя/слушателя в заблуждение, навязывая своими формули­ровками неоптимальные репрезентации и/или средства их трансформа­ции. В этом отношении использующие их психологи прямо нарушают один из грайсовских принципов коммуникативной прагматики, кото­рый предписывает говорящему быть релевантным (так называемая мак­сима отношения — см. 7.4.1). Что касается испытуемых, то они значи­тельно усложняют себе путь к решению, заранее ожидая поддержки со стороны экспериментатора и стараясь быть кооперативными: «Если экспериментатор сообщает мне все эти сведения, я должен обязатель­но попытаться использовать их в моем решении задачи».

Таким образом, мышление как решение задач — это прежде всего искусство выбора и отбора: выбора общего формата репрезентации ус­ловий и соответствующих метапроцедур, а также отсеивания (с крою­щейся за ним метапроцедурой КОНТРОЛЬ) подчас очень заметных, но иррелевантных с точки зрения разрешения проблемы деталей. Подоб­ное отсеивание иррелевантных и даже намеренно вводящих в заблуж­дение деталей делает возможной более полную концентрацию на су­щественных для решения моментах. Судя по всему, эти процессы по их значимости выходят далеко за рамки собственно психологических исследований малых мыслительных задач, представляя собой одну из основ значительно более сложных интеллектуальных достижений, на­пример, открытий Коперника или Галилея. Ведь эти открытия проти­воречили не только общепринятому «академическому знанию», но и непосредственно наблюдаемым «физическим фактам», таким как види­мое движение Солнца относительно неподвижного горизонта и, несом­ненно, более высокая скорость падения тяжелых тел по сравнению с легкими.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.