Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Естественный и поляризованный свет. Поляризация при отражении и преломлении. Двойное преломление света. Закон Малюса. Интерференция поляризованного света.






При изучении явлений интерференции и дифракции вопрос о том, являются световые волны продольными или поперечными, имел второстепенное значение. Там мы изучали способы оценки модуля вектора напряженности электрической составляющей электромагнитной волны. Здесь мы обсудим его направление. Основное свойство электромагнитных волн – поперечность колебаний векторов напряжённости электрического и магнитного полей по отношению к направлению распространения волны (рис. 11.1).

В каждом отдельном случае (для каждого цуга волн) имеется та или иная ориентация векторов в пространстве по отношению к распространению (направления луча). Такая асимметрия характерна только для поперечных волн. Продольная волна всегда симметрична относительно направления распространения.

Как правило, излучение естественных источников представляет собой пример электромагнитных волн со всевозможными равновероятностными ориентациями вектора Е, т.е. с неопределённым состоянием поляризации. Такой свет называют неполяризованным илиестественным(рис. 11.2, а).

Свет с преимущественным (но не исключительным) направлением колебаний вектора Е называют частично поляризованным светом (рис. 11.2, б).

в природе существует обширный класс электромагнитных волн, в которых колебания электрического и магнитного полей совершаются в строго определённых направлениях. Такое свойство определяет состояние поляризации электромагнитной волны. Если вектор напряженности электрического поля электромагнитной волны колеблется вдоль некоторого направления в пространстве, говорят о линейной поляризации рассматриваемой электромагнитной волны (рис. 11.2, в). Электромагнитная волна в этом случае называется полностью поляризованной.

из уравнений Максвелла следует существование полностью поляризованных электромагнитных волн, у которых по мере распространения волны векторы напряжённости электрического и магнитного полей изменяются таким образом, что траектория их движения в плоскости, поперечной направлению распространения волны, представляет собой эллипс или окружность. В этом случае говорят, соответственно, об эллиптической, или круговой, поляризации электромагнитной волны (рис. 11.3, а, б). В п. 2.4 мы подробно рассмотрели различные виды поляризации колебаний.

При распространении электромагнитной волны в реальных средах возможно превращение неполяризованных волн в полностью поляризованные и наоборот. Примером такого превращения является поляризация электромагнитной волны при отражении.

Другой практически важный способ поляризации электромагнитных волн, в частности световых волн, представляет рассматриваемое в этой теме распространение электромагнитных волн в оптически анизотропных средах.

Естественно, что инструментом для исследования асимметрии поперечных волн может служить система, сама являющаяся асимметричной. Газ, жидкость, твердые аморфные тела изотропны.

Асимметрией обладают кристаллические тела. Их свойства могут различаться в различных направлениях. Они анизотропны. Отсюда следует, что асимметрию поперечных световых лучей можно изучать, пропуская свет через анизотропные кристаллы.

Устройства, позволяющие получать линейно поляризованный свет, называют поляризаторами. Когда те же самые приборы используют для анализа поляризации света, их называют анализаторами. Через такие устройства проходит только та часть волны, у которой вектор Е колеблется в определенном направлении. Это направление называют главной плоскостью поляризатора (анализатора).

Пусть естественный свет падает на кристалл поляризатора Р (рис. 11.5).

После прохождения поляризатора, он будет линейно поляризован в направлении ОО’. Интенсивность света при этом уменьшится на половину. Это объясняется тем, что при случайных ориентациях вектора E все направления равновероятны.

Если вращать поляризатор вокруг светового луча, то никаких особых изменений не произойдет. Если же на пути луча поставить еще и второй кристалл – анализатор A, то интенсивность света будет изменяться в зависимости от того, как ориентированы друг относительно друга обе пластины. Интенсивность света будет максимальна, если оси обоих кристаллов параллельны, и равна нулю, если оси перпендикулярны друг другу.

Все это можно объяснить следующим образом:

· световые волны поперечны, однако в естественном свете нет преимущественного направления колебаний;

· кристалл поляризатора пропускает лишь те волны, вектор E которых имеет составляющую, параллельную оси кристалла (именно поэтому поляризатор ослабляет свет в два раза);

· кристалл анализатора, в свою очередь, пропускает свет, когда его ось параллельна оси поляризатора.

Свет поляризуется при отражении от границы двух сред и при прохождении границы – при преломлении.

Если угол падения света на границу раздела двух диэлектриков (например воздух – стекло) отличен от нуля, то отраженный и преломленный свет оказывается частично поляризованным. (При отражении света от проводящей поверхности свет получается эллиптически поляризованным).

В отраженном луче преобладают колебания, перпендикулярные плоскости падения, а в преломленном луче – колебания параллельные плоскости падения (рис. 11.6, а).

Степень поляризации зависит от угла падения.

В 1669 г. датский ученый Эразм Бартолин опубликовал работу, в которой сообщил об открытии нового физического явления – двойного преломления света. Рассматривая преломление света в кристалле исландского шпата (), Бартолин обнаружил, что луч внутри кристалла расщепляется на два луча (рис. 11.7). Если кристалл поворачивать относительно направления первоначального луча, то поворачиваются оба луча, прошедшие через кристалл. Один из лучей вел себя согласно известному закону преломления света, а второй совершенно необычно. Поэтому Бартолин первый луч назвал обыкновенным, а второй необыкновенным.

Кроме того, Бартолин обнаружил, что луч света, падая в определенном направлении в кристалле исландского шпата, не раздваивается.

Объяснение этому явлению дал современник Бартолина - голландский ученый Христиан Гюйгенс. Он показал, что необычное поведение луча света, проходящего через исландский шпат, связано с анизотропией кристалла. Направление, вдоль которого падающий луч не раздваивается, Гюйгенс назвал оптической осью, и кристаллы, имеющие одну оптическую ось, – одноосными кристаллами (исландский шпат, турмалин). Оптические свойства одноосного кристалла одинаковы вдоль всех направлений, образующих один и тот же угол с оптической осью. Любая плоскость, проходящая через оптическую ось, называется главным сечением кристалла. Существуют кристаллы, у которых имеются две оптические оси. Такие кристаллы называют двухосными (гипс, слюда).

В своей книге «Трактат о свете», изданной в Лейдене в 1690 г., Гюйгенс подробно объяснил явление двойного преломления света. Благодаря своим исследованиям Гюйгенс подошел к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными.

Исследования показали, что обыкновенный и необыкновенный лучи являются полностью поляризованными во взаимно перпендикулярных направлениях.

Плоскость колебаний обыкновенного луча перпендикулярна главному сечению, а необыкновенного луча – совпадает с главным сечением. На выходе из кристалла оба луча распространяются в одинаковом направлении и различаются лишь направлением поляризации (рис. 11.8, б).

Явление двойного лучепреломления используется для получения поляризованного света.

В некоторых кристаллах один из лучей поглощается сильнее другого (дихроизм). Очень сильным дихроизмом в видимом свете обладает кристалл турмалина (прозрачное кристаллическое вещество зеленоватой окраски). В нем обыкновенный луч практически полностью поглощается на длине 1 мм, а необыкновенный луч выходит из кристалла. В кристалле сульфата йодистого хинина один из лучей поглощается на длине 0, 1 мм. Это явление используется для создания поляроидов. На выходе поляроида получается один поляризованный луч.

Часто в качестве поляризатора используется так называемая призма Николя. Это призма из исландского шпата, разрезанная по диагонали и склеенная канадским бальзамом (рис. 11.9).

В 1809 г. французский инженер Э. Малюс открыл закон, названный впоследствии его именем. В опытах Малюса свет последовательно пропускался через две одинаковые пластинки из турмалина.

Пластинки могли поворачиваться друг относительно друга на угол φ (рис. 11.10).

Ни двойное лучепреломление, ни закон Малюса не нашли объяснения в рамках теории продольных волн. Для продольных волн направление распространения луча является осью симметрии. В продольной волне все направления в плоскости, перпендикулярной лучу, равноправны. В поперечной волне (например в волне, бегущей по резиновому жгуту) направление колебаний и перпендикулярное ему направление не равноправны (рис. 11.11).

Из рисунка видно, что поворот щели S вызовет затухание волны.

С помощью разложения вектора E на составляющие по осям можно объяснить закон Малюса (рис. 11.10).

В каждый момент времени вектор E может быть спроектирован на две взаимно перпендикулярные оси (рис. 11.12).

Рассмотрим прохождение естественного света последовательно через два идеальных поляроида Р и А (рис. 11.10), разрешенные направления которых развернуты на некоторый угол φ. Первый поляроид играет роль поляризатора. Он превращает естественный свет в линейно-поляризованный. Второй поляроид служит для анализа падающего на него света. Здесь также используется явление дихроизма.

Световую волну с амплитудой E0 разложим на две составляющие.

 

 

Таким образом, в электромагнитной теории света закон Малюса находит естественное объяснение на основе разложения вектора E на составляющие.

Явления интерференции поляризованных лучей исследовались в классических опытах Френеля и Арго (1816 г.), доказавших поперечность световых колебаний. Суть их в зависимости результата интерференции от угла между плоскостями световых колебаний: полосы наиболее контрастны при параллельных плоскостях и исчезают, если волны поляризованы ортогонально. Трудность получения интерференции поляризованных волн состоит в том, что при наложении двух когерентных лучей, поляризованных во взаимно перпендикулярных направлениях, никакой интерференционной картины с максимумами и минимумами интенсивности получиться не может. Интерференция возникает только в том случае, если колебания во взаимодействующих лучах совершаются вдоль одного и того же направления. Колебания в двух лучах, первоначально поляризованных во взаимно перпендикулярных направлениях, можно свести в одну плоскость, пропустив эти лучи через поляризующую кристаллическую пластинку.

Рассмотрим схему получения интерференции поляризованных лучей (рис. 11.13).






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.