Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Классификация конденсаторов






В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Также различают конденсаторы по форме обкладок: плоские, цилиндрические, сферические и другие.

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

· Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).

· Конденсаторы с газообразным диэлектриком.

· Конденсаторы с жидким диэлектриком.

· Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.

· Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.

· Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка.

· Твердотельные конденсаторы — вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ ~50000 часов при температуре 85°С. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются.

Основные параметры постоянных конденсаторов.

1. Номинальное значение емкости конденсатора.

2. Допускаемое отклонение действительной емкости от номинального значения (в %).

3. Тангенс угла потерь или добротность Q (Q=1/tgδ).

4. Ток утечки (в основном для электролитических конденсаторов).

5. Сопротивление изоляции или постоянная времени саморазряда. Сопротивление изоляции определяют из формулы Rиз=U0/Iут где U0 – постоянное напряжение, приложенное к конденсатору, вызвавшее ток утечки Iут.

6. Температурные коэффициент емкости.

7. Номинальное напряжение.

При изучении вопроса необходимо обратить внимание на следующие особенности.

К нелинейным резисторам относятся варисторы, тензорезисторы, фоторезисторы, магнеторезисторы, терморезисторы и др.

Варистор (англ. vari(able)(resi)stor переменныйрезистор) полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Обладает свойством резко уменьшать свое сопротивление с единиц ГОм до десятков Ом при увеличении приложенного к нему напряжения выше пороговой величины. При дальнейшем увеличении напряжения сопротивление уменьшается ещё сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП).

Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника преимущественно порошкообразного карбида кремния SiC или оксида цинка ZnO, и связующего вещества (глина, жидкое стекло, лаки, смолы и др.). Далее поверхность полученного элемента металлизируют и припаивают к ней выводы.

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.

Температурный коэффициент сопротивления варистора - отрицательная величина.

Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0, 1 мА до 1 А; высоковольтные варисторы - на рабочее напряжение до 20 кВ.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях - для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков - значительный низкочастотный шум и старение - изменение параметров со временем и при колебаниях температуры.

Терморезистор – полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры.

Терморезистор был изобретён Самюэлем Рубеном в 1930 году.

Терморезисторы изготавливаются из материалов с высоким температурным коэффициентом сопротивления (ТКС), который обычно на порядки выше, чем ТКС металлов и металлических сплавов.

Резистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов, галогенидов, халькогенидов некоторых металлов, в различном конструктивном исполнении, например в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1—10 микрометров до нескольких сантиметров.

По типу зависимости сопротивления от температуры различают терморезисторы с отрицательным (термисторы или NTC-термисторы, от слов «Negative temperature coefficient») и положительным (позисторы или PTC-термисторы, от слов «Positive temperature coefficient»)температурным коэффициентом сопротивления (или ТКС). Для позисторов - с ростом температуры растёт их сопротивление; для термисторов — увеличении температуры приводит к падению их сопротивления.

Терморезисторы с отрицательным ТКС (термисторы) изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoOx, NiO и CuO), полупроводников типа AIII BV, стеклообразных, легированных полупроводников (Ge и Si), и других материалов.

Условно терморезисторы классифицируют как низкотемпературные (предназначенные для работы при температуpax ниже 170 К), среднетемпературные (от 170 до 510 К) и высокотемпературные (выше 570 К). Выпускаются терморезисторы, предназначенные для работы при температурах от 900 до 1300 К.

Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках. Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:

· номинального (при 25 °C) электрического сопротивления;

· температурного коэффициента сопротивления.

Также существуют комбинированные приборы, такие как терморезисторы с косвенным нагревом. В этих приборах в одном корпусе совмещены терморезистор с гальванически изолированным нагревательным элементом, задающего температуру терморезистора, и, соответственно, его сопротивление. Такие приборы могут использоваться в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу такого терморезистора.

Режим работы терморезисторов зависит от выбранной рабочей точки на вольт-амперной характеристики (или ВАХ) такого прибора. В свою очередь ВАХ зависит от приложенной к прибору температуры и конструктивных особенностей терморезистора.

Терморезисторы с рабочей точкой выставленной на линейном участке ВАХ используются для контроля за изменением температуры и компенсации параметров (электрическое напряжение или электрический ток) электрических цепей, возникших вследствие изменения температуры. Терморезисторы с рабочей точкой выставленной на нисходящем участке ВАХ (с «отрицательным сопротивлением») применяются в качестве пусковых реле, реле времени, в системах измерения и контроля мощности электро­магнит­ного излучения на сверхвысоких частотах (или СВЧ), системах теплового контроля и пожарной сигнализации, в установках регулирования расхода жидких и сыпучих сред.

Наиболее широко используются среднетемпературные терморезисторы (с температурным ТКС от − 2, 4 до − 8, 4 %/К), работающие в широком диапазоне сопротивлений (от 1 до 106 Ом).

Так же существуют терморезисторы с небольшим положительным температурным коэффициентом сопротивления (от 0, 5 до 0, 7 %/К) выполненные на основе кремния, сопротивление которых изменяется по закону близкому к линейному. Такие терморезисторы находят применение в системах охлаждения и температурной стабилизации режимов работы транзисторов в различных радиоэлектронных системах.

Фоторезистор — полупроводниковый прибор, изменяющий величину своего сопротивления при облучении светом.

Для изготовления фоторезисторов используют полупроводниковые материалы с шириной запрещенной зоны, оптимальной для решаемой задачи. Так, для регистрации видимого света используются фоторезисторы из селенида и сульфида кадмия, Se. Для регистрации инфракрасного излучения используются Ge (чистый или легированный примесями Au, Cu или Zn), Si, PbS, PbSe, PbTe, InSb, InAs, HgCdTe, часто охлаждаемые до низких температур. Полупроводник наносят в виде тонкого слоя на стеклянную или кварцевую подложку или вырезают в виде тонкой пластинки из монокристалла. Слой или пластинку полупроводника снабжают двумя электродами и помещают в защитный корпус.

Важнейшие параметры фоторезисторов:

· интегральная чувствительность — отношение изменения напряжения на единицу мощности падающего излучения (при номинальном значении напряжения питания);

· порог чувствительности - величина минимального сигнала, регистрируемого фоторезистором, отнесённая к единице полосы рабочих частот.

Тензорезистор (от лат. tensus — напряжённый и лат. resisto — сопротивляюсь) — резистор, сопротивление которого изменяется в зависимости от его деформации. Тензорезисторы используются в тензометрии. С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов. Тензорезистор является основной составной частью тензодатчиков, применяющихся для косвенного измерения силы, давления, веса, механических напряжений, крутящих моментов и пр.

Магнетосопротивление (магниторезистивный эффект) - изменение электрического сопротивления материала в магнитном поле. Впервые эффект был обнаружен в1856 Уильямом Томсоном. В общем случае можно говорить о любом изменении тока через образец при том же приложенном напряжении и изменении магнитного поля. Все вещества в той или иной мере обладают магнетосопротивлением. Для сверхпроводников, способных без сопротивления проводить электрический ток, существует критическое магнитное поле, которое разрушает этот эффект и вещество переходит в нормальное состояние, в котором наблюдается сопротивление. В нормальных металлах эффект магнетосопротивления выражен слабее. В полупроводниках относительное изменение сопротивления может быть в 100—10 000 раз больше, чем в металлах, и может достигать сотен тысяч процентов.

Магнетосопротивление вещества зависит и от ориентации образца относительно магнитного поля. Это связано с тем, что магнитное поле не изменяет проекцию скорости частиц на направление магнитного поля, но благодаря силе Лоренца закручивает траектории в плоскости, перпендикулярной магнитному полю. Это объясняет, почему поперечное поле действует сильнее продольного.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.