Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Наноматериалы






 

 

Физика низкоразмерных структур ‑ актуальнейшая и наиболее динамично развивающаяся область современной физики твердого тела. Интерес к этой области связан как с принципиально новыми фундаментальными научными проблемами и физическими явлениями, так и с перспективами создания на основе уже открытых явлений совершенно новых квантовых устройств и систем с широкими функциональными возможностями для опто- и наноэлектроники, измерительной техники, информационных технологий нового поколения, средств связи и пр. Результатом исследований низкоразмерных систем стало открытие принципиально новых, а теперь уже широко известных явлений, таких как целочисленный и дробный квантовый эффект Холла в двумерном электронном газе, вигнеровская кристаллизация квазидвумерных электронов и дырок, обнаружение новых композитных квазичастиц и электронных возбуждений с дробными зарядами, высокочастотных блоховских осцилляции, а также многое другое. Современные полупроводниковые лазеры на гетеропереходах также основаны на использовании низкоразмерных систем (структуры с квантовыми ямами, самоорганизованными квантовыми точками и квантовыми нитями). Наиболее выдающиеся достижения в этой области отмечены тремя Нобелевскими премиями по физике (1985 г. ‑ за открытие квантового эффекта Холла; 1998 г. ‑ за открытие дробного квантового эффекта Холла; 2000 г. ‑ за труды, заложившие основы современных информационных технологий).

Развитие этой области открыло возможности конструирования средствами зонной инженерии и инженерии волновых функций и последующего изготовления с помощью современных высоких технологий наноструктур (сверхрешётки, квантовые ямы, точки и нити, квантовые контакты, атомные кластеры и т.д.) с электронным спектром и свойствами, требуемыми для обнаружения и изучения новых физических явлений или для соответствующих приложений. Сконструированные таким образом наноструктуры являются, по существу, искусственно созданными материалами с наперед заданными свойствами.

Вне всяких сомнений, элементная база, основанная на использовании разнообразных низкоразмерных структур, является наиболее перспективной для электронной техники новых поколений. Однако при переходе к системам нанометрового масштаба начинает отчетливо проявляться квантово механическая природа квазичастиц в твердом теле. В результате возникает принципиально новая ситуация, когда квантовые эффекты (размерное квантование, конфайнмент, туннелирование, интерференция электронных состояний и др.) будут играть ключевую роль в физических процессах в таких объектах и в функционировании приборов на их основе.

Если при уменьшении объема какого-либо вещества по одной, двум или трем координатам до размеров нанометрового масштаба возникает новое качество, или это качество возникает в композиции из таких объектов, то эти образования следует отнести к наноматериалам, а технологии их получения и дальнейшую работу с ними ‑ к нанотехнологиям. Подавляющее большинство новых физических явлений на наномасштабах проистекает из волновой природы частиц (электронов и т.д.), поведение которых подчиняется законам квантовой механики. Проще всего это пояснить на примере полупроводников. Когда по одной или нескольким координатам размеры становятся порядка и меньше длины волны де Бройля носителей заряда ‑ полупроводниковая структура становится резонатором, а спектр носителей заряда ‑ дискретным. То же самое с рентгеновскими зеркалами. Толщины слоев, способных отражать в фазе рентгеновское излучение, лежат в нанометровом диапазоне. В других случаях возникновение нового качества может быть связано с менее наглядными явлениями. Представляется, что такой подход позволяет составить достаточно полное представление о наноматериалах и возможных областях их использования.

Использование современных конструкционных материалов обычно ограничивается тем, что увеличение прочности приводит к снижению пластичности. Данные по нанокомпозитам показывают, что уменьшение структурных элементов и более глубокое изучение физики деформационных процессов, которые определяют пластичность наноструктурных материалов, могут привести к созданию новых типов материалов, сочетающих высокие прочность и пластичность.

Анализ проведенных в последние годы отечественных и зарубежных исследований свидетельствует о высокой перспективности следующих основных направлений в области разработки конструкционных материалов: изготовление наноструктурных керамических и композиционных изделий точной формы, создание наноструктурных твердых сплавов для производства режущих инструментов с повышенной износостойкостью и ударной вязкостью, создание наноструктурных защитных термо- и коррозионно-стойких покрытий, создание обладающих повышенной прочностью и низкой воспламеняемостью полимерных композитов с наполнителями из наночастиц и нанотрубок.

В лабораторных исследованиях получены образцы изделий из нанофазной керамики (плотности на уровне 0, 98-0, 99 от теоретического значения) на основе оксидов алюминия и ряда переходных металлов. Экспериментально подтверждено, что плотная наноструктурная керамика имеет повышенную пластичность при сравнительно невысоких температурах. Увеличение пластичности при уменьшении размера частиц вызвано сдвиговым перемещением нанокристаллических зерен относительно друг друга при наложении нагрузки. При этом отсутствие нарушения межзеренной связи объясняется эффективным диффузионным переносом атомов в приповерхностном слое частиц. В перспективе повышенная пластичность означает возможность сверхпластичного формования керамических и композиционных изделий, что исключает необходимость трудо- и энергозатратной финишной обработки материалов высокой твердости.

В последние годы разработаны нанокомпозитные металлокерамические материалы, в частности, на основе и , значительно превосходящие по износостойкости, прочности и ударной вязкости аналоги с обычной микроструктурой. Повышенные эксплуатационные характеристики нанокомпозитных материалов обусловлены образованием при спекании специфических непрерывных нитевидных структур, формирующихся в результате трехмерных контактов между наночастицами разных фаз. Разработка и внедрение в промышленное производство технологии создания нанокомпозитных изделий будет способствовать решению проблемы изготовления высококачественных режущих инструментов.

Повышение коррозионной стойкости наноструктурных покрытий обусловлено, в первую очередь, снижением удельной концентрации примесей на поверхности зерен по мере уменьшения их размеров. Более чистая поверхность обеспечивает более однородную морфологию и более высокую коррозионную стойкость межзеренных границ. Наноструктурные покрытия характеризуются сверхвысокой прочностью. Один из основных механизмов упрочнения обусловлен эффектом скопления дислокаций вблизи препятствий, которыми при уменьшении размеров зерен являются их границы. Важным преимуществом покрытий с наноразмерной структурой является обусловленная повышенной пластичностью возможность снижения в них остаточных напряжений, что позволяет изготовлять покрытия миллиметровой толщины.

Использование диспергированных в полимерной матрице неорганических наполнителей из наноразмерных порошков позволяет существенно повысить огнестойкость пластмасс, являющуюся одним из основных недостатков при использовании их в качестве конструкционных материалов, поскольку продукты сгорания полимеров, как правило, представляют собой ядовитые вещества. Результаты исследований показывают, что снижение горючести может быть доведено до самозатухания пламени. При этом наноразмерные порошковые наполнители не снижают механической прочности и обрабатываемости материалов. Полимерные нанокомпозиты обладают высокой абляционной стойкостью, что открывает перспективы их использования для защиты поверхности изделий, эксплуатируемых в условиях воздействия высоких температур.

 

.


Рисунок 1 Классификация наноматериалов

1.1.1 Тонкие пленки

 

Тонкие плёнки могут быть твёрдыми или жидкими (реже — газообразными). Состав, структура и свойства тонких плёнок могут отличаться от таковых для объемной фазы, из которой образовалась тонкая плёнка. К твёрдым тонким пленкам относятся оксидные плёнки на поверхности металлов и искусственные плёночные покрытия, формируемые на различных материалах с целью создания приборов микроэлектроники, предотвращения коррозии, улучшения внешнего вида и т. п.

Жидкие тонкие плёнки разделяют газообразную дисперсную фазу в пенах и жидкие фазы в эмульсиях; образование устойчивых пен и эмульсий возможно только при наличии ПАВ в составе пленок. Жидкие тонкие плёнки могут возникать самопроизвольно между зернами в поликристаллических твёрдых телах, если поверхностная энергия границы зерна превышает поверхностное натяжение на границе твёрдой и жидкой фаз более, чем вдвое (условие Гиббса–Смита). Газообразные тонкие плёнки с заметным временем жизни могут возникнуть между каплей и объемной жидкостью в условиях испарения.

Определение толщины тонких пленок часто проводят методами, основанными на измерении интенсивности отражённого света, например, при помощи эллипсометрии; используют также электрические методы, основанные на определении ёмкости и проводимости тонких плёнок. Для изучения твердых тонких плёнок применяютэлектронную микроскопию, рентгеновскую спектроскопию и другие методы, разработанные для исследования поверхности твердых тел. Получение тонких пленок и тонкопленочных покрытий лежит в основе ряда современных областей техники, прежде всего микроэлектроники.

Нанесение тонких плёнок на подложку может осуществляться различными методами, наиболее часто используемые методы:

· химическое и плазмохимическое осаждение из газовой фазы,

· процессы вакуумного напыления, в том числе

· вакуумное термическое распыление

· магнетронное распыление

· вакуумно-дуговое нанесение

Объекты, имеющие столь малые размеры, в ряде случаев кардинально меняют свои свойства. Например, у столь малых объектов меняется температура плавления, степень переохлаждения и межплоскостное расстояние по сравнению с массивными объектами. Многие функциональные покрытия имеют ограничения по толщине, свыше которой теряют свои свойства либо разрушаются при нанесении.

Изменение свойств объясняется увеличением роли поверхности с уменьшением объекта, поскольку объём тела изменяется пропорционально кубу линейных размеров, а площадь поверхности — квадрату. Соответственно отношение S/V ведёт себя как 1/r. Благодаря этому силы поверхностного натяжения, которые в массивных образцах не играют существенной роли, в нанообъектах становятся существенными. А поскольку они действуют в приповерхностном слое, их действие можно уподобить приложению внешнего давления, которое, как известно, может изменить как температуру плавления, так и межплоскостные расстояния.

Основное применение находят твёрдые тонкие плёнки, наносимые на поверхность различных объектов.

С тонкими плёнками связаны такие отрасли промышленности, как:

· металлообработка — на современный инструмент наносят различные функциональные покрытия, обеспечивающие его износостойкость, требуемые трибологические и другие свойства

· нанесение декоративных и защитных покрытий

· техника высокого вакуума

· микротехнология и производство микроэлектронных устройств — основной метод получения функциональных слоёв

· оптика — получение просветляющих и отражающих покрытий

 

 

1.1.2 Размерный эффект

 

 

Размерный эффект (англ. effect of particle (grain) size) — комплекс явлений, связанных с существенным изменением физико-химических свойств вещества вследствие: 1) непосредственного уменьшения размера частиц (зерен, кристаллитов); 2) вклада границ раздела в свойства системы; 3) соизмеримости размера частиц с физическими параметрами, имеющими размерность длины и определяющими свойства системы (размер магнитных доменов, длина свободного пробега электрона, дебройлевская длина волны, размер экситона в полупроводниках и т.д.). Под размерными эффектами в биологии понимают размерно-зависимое изменение биологических (физиологических и т. п.) свойств вещества.

 

 

Описание

 

Размерные эффекты наблюдаются при уменьшении размера структурных элементов: частиц, кристаллитов и зерен ниже некоторой пороговой величины. Такие эффекты появляются, когда средний размер кристаллических зерен не превышает 100 нм, и наиболее отчетливо проявляются при размерах зерен менее 10 нм. Квантовые размерные эффекты проявляются в электронных свойствах вещества или материала и связаны с уменьшением размерности электронного газа, что приводит к изменению энергетического спектра (например, см. голубой сдвиг).

Влияние размера частиц на физико-химические свойства вещества можно объяснить наличием поверхностного давления, действующего на вещество. Это дополнительное давление, которое обратно пропорционально размеру частиц, приводит к увеличению энергии Гиббса и, как следствие, повышению давления насыщенных паров над наночастицами, уменьшению температур кипения жидкой фазы и плавления твердой (рис.). Изменяются и другие термодинамические характеристики — константы равновесия и стандартные электродные потенциалы.

Размерный эффект широко распространен в гетерогенном катализе. Во многих случаях наночастицы проявляют каталитическую активность там, где более крупные частицы не активны. Так, нанокластеры золота катализируют селективное окисление стирола на воздухе до бензальдегида: , тогда как частицы золота более крупного размера на эту реакцию действия не оказывают.

Размерные эффекты в биологии носят совсем иной характер. Биологические молекулы, полимеры и внутриклеточные структуры наноразмерны, однако их свойства (функции) определяются в основном структурой, а не размерностью.

Вместе с тем, взаимодействие искусственных конструкций с биологическими структурами определяется не только структурой, но и размерностью. Например, проницаемость кожи и кровеносных сосудов для липосом зависит от размеров последних. Как следствие, упаковка в липосомы лекарственных средств приводит к изменению таких важных фармакологических свойств последних, как время циркуляции в крови и распределение в органах. Создание наноразмерного рельефа на поверхности синтетических материалов лучше стимулирует адгезию клеток по сравнению с микрорельефом и используется в тканевой инженерии. От размера и рельефа поверхности наночастиц зависят механизм и эффективность их эндоцитоза, а также внутриклеточная локализация. Токсичность частиц также может определяться размерностью. Например, золотые наночастицы размером 1, 4 нм обладают наиболее высокой токсичностью по сравнению с другими размерами, так как специфически встраиваются в большую бороздку ДНК и индуцируют смерть клеток.

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.