Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Краткая информация о протоколах, входящих в задание






ICMP

Протокол передачи команд и сообщений об ошибках (ICMP - internet control message protocol, RFC-792, - 1256) выполняет многие и не только диагностические функции, хотя у рядового пользователя именно этот протокол вызывает раздражение, сообщая об его ошибках или сбоях в сети. Именно этот протокол используется программным обеспечением ЭВМ при взаимодействии друг с другом в рамках идеологии TCP/IP. Осуществление повторной передачи пакета, если предшествующая попытка была неудачной, лежит на TCP или прикладной программе. При пересылке пакетов промежуточные узлы не информируются о возникших проблемах, поэтому ошибка в маршрутной таблице будет восприниматься как неисправность в узле адресата и достоверно диагностироваться не будет. ICMP-протокол сообщает об ошибках в IP-дейтограммах, но не дает информации об ошибках в самих ICMP-сообщениях. ICMP использует IP, а IP-протокол должен использовать ICMP. В случае ICMP-фрагментации сообщение об ошибке будет выдано только один раз на дейтограмму, даже если ошибки были в нескольких фрагментах. Подводя итоги, можно сказать, что ICMP-протокол:

· выполняет передачу отклика на пакет или эхо на отклик;

· осуществляет контроль времени жизни дейтограмм в системе;

· реализует переадресацию пакета;

· выдает сообщения о недостижимости адресата или о некорректности параметров;

· формирует и пересылает временные метки;

· выдает запросы и отклики для адресных масок и другой информации.

ICMP-сообщения об ошибках никогда не выдаются в ответ на:

· ICMP-сообщение об ошибке.

· При мультикастинг'е или широковещательной адресации.

· Для фрагмента дейтограммы (кроме первого).

· Для дейтограмм, чей адрес отправителя является нулевым, широковещательным или мультикастинговым.

Эти правила призваны блокировать потоки дейтограмм, посылаемых в отклик на мультикастинг или широковещательные ICMP-сообщения

 

TCP

Протокол TCP (transmission control protocol, RFC-793, -1323) осуществляет доставку дейтограмм, называемых сегментами, в виде байтовых потоков с установлением соединения. Протокол TCP применяется в тех случаях, когда требуется гарантированная доставка сообщений. Он использует контрольные суммы пакетов для проверки их целостности и освобождает прикладные процессы от необходимости таймаутов и повторных передач для обеспечения надежности. Для отслеживания подтверждения доставки в TCP реализуется алгоритм " скользящего" окна. Наиболее типичными прикладными процессами, использующими TCP, являются FTP (file transfer protocol - протокол передачи файлов) и telnet. Кроме того, TCP используют системы SMTP, HTTP, X-windows, RCP (remote copy), а также " r" -команды. Прикладные процессы взаимодействуют с модулем TCP через порты. Под байтовыми потоками здесь подразумевается то, что один примитив, например, read или write может вызвать посылку адресату последовательности сегментов, которые образуют некоторый блок данных (сообщение).

Примером прикладного процесса, использующего ветвь TCP, может служить FTP, при этом будет работать стек протоколов ftp/tcp/ip/ethernet. Хотя протоколы UDP и TCP могли бы для сходных задач использовать разные номера портов, обычно этого не происходит. Модули TCP и UDP выполняют функции мультиплексоров/демультиплексоров между прикладными процессами и IP-модулем. При поступлении пакета в модуль IP он будет передан в TCP- или UDP-модуль согласно коду, записанному в поле протокола данного IP-пакета.

Если IP-протокол работает с адресами, то TCP, также как и UDP, с портами. Именно с номеров портов отправителя и получателя начинается заголовок TCP-сегмента.

 

HTTP

Протокол HTTP представляет собой протокол запросов-откликов. Клиент посылает запрос серверу в форме, определяющей метод, URL и версию протокола. В конце запроса следует сообщение, содержащее модификаторы, информацию о клиенте и, возможно, другие данные. Сервер откликается, посылая статусную строку, которая включает в себя версию протокола, код результата (успех/неудача) и сообщение, в котором содержатся данные о сервере и метаинформация.

Большинство HTTP-обменов инициируются пользователем и состоят из запросов ресурсов, имеющихся на определенном сервере. В простейшем случае такой запрос может быть реализован путем соединения пользовательского агента (UA) и базового сервера.

 

SMTP

Главной целью протокола simple mail transfer protocol (SMTP, RFC-821, -822) служит надежная и эффективная доставка электронных почтовых сообщений. SMTP является довольно независимой подсистемой и требует только надежного канала связи. Средой для SMTP может служить отдельная локальная сеть, система сетей или весь Интернет.

SMTP базируется на следующей модели коммуникаций: в ответ на запрос пользователя почтовая программа-отправитель устанавливает двухстороннюю связь с программой-приемником (TCP, порт 25). Получателем может быть оконечный или промежуточный адресат. SMTP-команды генерируются отправителем и посылаются получателю. На каждую команду должен быть отправлен и получен отклик.

Когда канал организован, отправитель посылает команду MAIL, идентифицирую себя. Если получатель готов к приему сообщения, он посылает положительное подтверждение. Далее отправитель посылает команду RCPT, идентифицируя получателя почтового сообщения. Если получатель может принять сообщение для оконечного адресата, он выдает снова положительное подтверждение. В противном случае он отвергает получение сообщения для данного адресата, но не вообще почтовой посылки. Взаимодействие с почтовым сервером возможно и в диалоговом режиме, например:


tn dxmint.cern.ch 25

(команда telnet с использованием порта 25)

 


220 dxmint.cern.ch sendmail ready at sun, 9 jul 1995 11: 13: 57 +0200

(связь установлена, код отклика 220 является положительным)


EHLO dxmint.cern.ch (поддерживает ли сервер расширение mime?)
500 command unrecognized (не поддерживает)
HELO crnvma.cern.ch (команда выхода на конкретный сервер)

250 dxmint.cern.ch hello crnvma.cern.ch, pleased to meet you

(отклик 250 также является положительным)

 


mail from: < >

(так как на моей PC нет резидентной почтовой программы, я не указываю обратного адреса)


250 < >... sender ok (команда прошла успешно)
RCPT TO: ysemenov@cernvm.cern.ch (указываем адрес места назначения)

250... recipient ok

DATA (начало ввода текста сообщения)
nu-i-nu... (текст сообщения)
. (знак конца сообщения)
QUIT (прерывание или завершение процедуры)

221 dxmint.cern.ch closing connection

(сообщение об успешном завершении процедуры)


Почтовое сообщение отправлено без использования доступа к локальной почтовой программе (mail на sun, например). Следует отметить, что работа через порт 25 в данном случае открывает богатые возможности для хакеров. Вообще умелый программист может многого достичь, используя номера портов. Здесь есть над чем поработать людям, ответственным за безопасность сетей.

 

POP3

В некоторых небольших узлах сети Интернет бывает непрактично поддерживать систему передачи сообщений (MTS - Message Transport System). Рабочая станция может не иметь достаточных ресурсов для обеспечения непрерывной работы SMTP-сервера [RFC-821]. Для " домашних ЭВМ" слишком дорого поддерживать связь с Интернет круглые сутки.

Но доступ к электронной почте необходим как для таких малых узлов, так и индивидуальных ЭВМ. Для решения этой проблемы разработан протокол POP3 (Post Office Protocol - Version 3, STD: 53. M. Rose, RFC-1939). Этот протокол обеспечивает доступ узла к базовому почтовому серверу.

POP3 не ставит целью предоставление широкого списка манипуляций с почтой, он лишь получает и стирает почтовые сообщения. Более продвинутый и сложный протокол IMAP4 обсуждается в RFC-2060 (порт 143). Об аутентификации в POP3 можно прочесть в документе RFC-1734.

В дальнейшем клиентом будет называться машина, пользующаяся услугами POP3, а сервером - сторона, предлагающая услуги POP3.

Когда пользователь клиента хочет послать сообщение, он устанавливает SMTP связь с почтовым сервером непосредственно и посылает все, что нужно через него. При этом POP3-сервер не обязательно является почтовым сервером.

В исходный момент POP3-сервер прослушивает TCP-порт 110. Если клиент хочет воспользоваться услугами POP3-сервера, то устанавливает с ним TCP связь. После установления связи POP3-сервер посылает клиенту уведомление (например, +OK POP3 server ready) и сессия переходит в фазу авторизации (см. также RFC-1734, -1957). После этого может производиться обмен командами и откликами.

Команды POP3 состоят из ключевых слов (3-4 символа), за которыми могут следовать аргументы. Каждая команда завершается парой символов CRLF. Как ключевые слова, так и аргументы могут содержать только печатаемые ASCII-символы. В качестве разделителя используются символы пробела. Каждый аргумент может содержать до 40 символов.

Сигнал отклика в POP3 содержит индикатор состояния и ключевое слово, за которым может следовать дополнительная информация. Отклик также завершается кодовой последовательностью CRLF. Длина отклика не превышает 512 символов, включая CRLF. Существует два индикатора состояния: положительный - " +OK" и отрицательный " -ERR" (все символы прописные).

Отклики на некоторые команды могут содержать несколько строк. В этом случае последняя строка содержит код завершения 046 ("."), за которым следует CRLF.

На практике многострочные отклики для исключения имитации завершаются последовательностью CRLF.CRLF.

В процессе авторизации клиент должен представить себя серверу, передав имя и пароль (возможен вариант посылки команды APOP). Если авторизация успешно завершена, сессия переходит в состояние транзакции (TRANSACTION). При получении от клиента команды QUIT сессия переходит в состояние UPDATE, при этом все ресурсы освобождаются и TCP связь разрывается.

На синтаксически не узнанные и неверные команды, сервер реагирует, посылая отрицательный индикатор состояния.

POP3 сервер может быть снабжен таймером пассивного состояния (10 мин.), который осуществляет автоматическое прерывание сессии. Приход любой команды со стороны клиента сбрасывает этот таймер в нуль.

Сервер нумерует все передаваемые сообщения из своего почтового ящика и определяет их длину. Положительный отклик начинается с +OK, за ним следует пробел, номер сообщения, еще один пробел и длина сообщения в октетах. Завершается отклик последовательностью CRLF. Переданные сообщения удаляются из почтового ящика сервера. Все сообщения, передаваемые во время сессии POP3 должны следовать рекомендациям формата Интернет сообщений [RFC822].

В состоянии транзакции клиент может посылать серверу последовательность POP3 команд, на каждую из которых сервер должен послать отклик.

Далее следует краткое описание некоторых команд, используемых в состоянии транзакция.

LIST [сообщение]

Аргументы: номер сообщения (опционно), который не может относиться к сообщению, помеченному как удаленное. Команда может быть выдана только в режиме TRANSACTION. При наличии аргумента сервер выдает положительный отклик, содержащий информационную строку сообщения. Такая строка называется скэн-листингом сообщения (scan listing). scan listing состоит из номера сообщения, за которым следует пробел и число октетов в сообщении. Сообщения, помеченные как удаленные, не пересылаются. Примером отрицательного отклика может служить: -ERR no such message.

Примеры использования команды LIST:

К: LIST
С: +OK 2 messages (320 octets)
С: 1 120
С: 2 200
С:.
...
Здесь и далее символом К обозначается клиент, а символом С - сервер.

DELE msg (msg - номер сообщения)

Сервер POP3 помечает сообщение как удаленное. Любая ссылка на это сообщение в будущем вызовет ошибку. При этом само сообщение не удаляется пока сессия не войдет в режим UPDATE.

Пример использования команды:

К: DELE 1
С: +OK message 1 deleted
...
К: DELE 2
С: -ERR message 2 already deleted

USER name, где name - характеризует почтовый ящик сервера.

Команда используется на фазе авторизации или после неудачного завершения команд USER или PASS. При авторизации клиент должен сначала послать команду USER и лишь после получения положительного отклика команду PASS. Команда может вызвать следующие отклики:

+OK name is a valid mailbox
-ERR never heard of mailbox name
Примеры использования команды USER:

К: USER frated
С: -ERR sorry, no mailbox for frated here
...
К: USER mrose
С: +OK mrose is a real hoopy frood

PASS string (string - пароль для доступа к почтовому серверу)

Команда работает в режиме авторизации сразу после команды USER. Когда клиент выдает команду PASS, сервер использует аргументы команд USER и PASS для определения доступа клиента к почтовому ящику. На команду PASS возможны следующие отклики:

+OK maildrop locked and ready
-ERR invalid password
-ERR unable to lock maildrop
Пример диалога при использовании команды PASS:
К: USER mrose
С: +OK mrose is a real hoopy frood
К: PASS secret
С: -ERR maildrop already locked
...
К: USER mrose
С: +OK mrose is a real hoopy frood
К: PASS secret
С: +OK mrose's maildrop has 2 messages (320 octets)

 

ARP

Любое устройство, подключенное к локальной сети (Ethernet, FDDI и т.д.), имеет уникальный физический сетевой адрес, заданный аппаратным образом. 6-байтовый Ethernet-адрес выбирает изготовитель сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. Если у машины меняется сетевой адаптер, то меняется и ее Ethernet-адрес.

4-байтовый IP-адрес задает менеджер сети с учетом положения машины в сети Интернет. Если машина перемещается в другую часть сети Интернет, то ее IP-адрес должен быть изменен. Преобразование IP-адресов в сетевые выполняется с помощью arp-таблицы. Каждая машина сети имеет отдельную ARP-таблицу для каждого своего сетевого адаптера. Не трудно видеть, что существует проблема отображения физического адреса (6 байт для Ethernet) в пространство сетевых IP-адресов (4 байта) и наоборот.

Протокол ARP (address resolution protocol, RFC-826) решает именно эту проблему - преобразует ARP- в Ethernet-адреса.

Рассмотрим процедуру преобразования адресов при отправлении сообщения. Пусть прикладная программа одной ЭВМ отправляет сообщение другой. Прикладной программе IP-адрес места назначения обычно известен. Для определения Ethernet-адреса просматривается ARP-таблица. Если для требуемого IP-адреса в ней присутствует Ethernet-адрес, то формируется и посылается соответствующий пакет. Если же с помощью ARP-таблицы не удается преобразовать адрес, то выполняется следующее:

1. Всем машинам в сети посылается пакет с ARP-запросом (с широковещательным Ethernet-адресом места назначения).
2. Исходящий IP-пакет ставится в очередь.

Каждая машина, принявшая ARP-запрос, в своем ARP-модуле сравнивает собственный IP-адрес с IP-адресом в запросе. Если IP-адрес совпал, то прямо по Ethernet-адресу отправителя запроса посылается ответ, содержащий как IP-адрес ответившей машины, так и ее Ethernet-адрес. После получения ответа на свой ARP-запрос машина имеет требуемую информацию о соответствии IP и Ethernet-адресов, формирует соответствующий элемент ARP-таблицы и отправляет IP-пакет, ранее поставленный в очередь. Если же в сети нет машины с искомым IP-адресом, то ARP-ответа не будет и не будет записи в ARP-таблицу. Протокол IP будет уничтожать IP-пакеты, предназначенные для отправки по этому адресу.

Протоколы верхнего уровня не могут отличить случай повреждения в среде ethernet от случая отсутствия машины с искомым IP-адресом. Во многих реализациях в случае, если IP-адрес не принадлежит локальной сети, внешний порт сети (gateway) или маршрутизатор откликается, выдавая свой физический адрес (режим прокси-ARP).

Функционально, ARP делится на две части. Одна - определяет физический адрес при посылке пакета, другая отвечает на запросы других машин. ARP-таблицы имеют динамический характер, каждая запись в ней " живет" определенное время после чего удаляется. Менеджер сети может осуществить запись в ARP-таблицу, которая там будет храниться " вечно". ARP-пакеты вкладываются непосредственно в ethernet-кадры.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.