Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Тепловизионная аппаратура






В основу принципа действия тепловизионных приборов положено двухмерное преобразование собствен­ного теплового излучения от объектов и местности, ил фона, в видимое изображение, что является одной из высших форм преобразования и хранения информации. Наличие в поле зрения регистрируемого теплового контраста позволяет визуализировать на мониторе полуто­новые черно-белые, или адекватные им «псевдоцветные», тепловизионные изображения.

Тепловизионная техника обладает рядом досто­инств и присущих только ей возможностей: обнаружение удаленных только теплоизлучаюших объектов (или целей) независимо от уровня естественной освещенности, а также до определенной степени - тепловых и дру­гих помех (дождя, тумана, снегопада, пыли, дыма и др.).

Начало развития тепловизионной техники было положено в конце 60-х годов исследованиями по двум основным направлениям: с использованием дискретных приемников излучения совместно с системами сканиро­вания (развертки) изображения и приборов без механиче­ского сканирования на базе двухмерных ИК-приемников.

При этом можно условно выделить четыре поколения их развития.

Нулевое поколение - основано на применении единичных охлаждаемых приемников и двухмерной (строчной и кадровой) развертки с помощью сканирующей оптико-механической системы; первое поколение - на применении строчных линеек приемников и упрощенной кадровой развертки; второе поколение – на использовании сгруппированных нескольких линеек (с временной задержкой и накоплением) и более низкоскоростной системой развертки. Ко второму поколению можно также отнести вакуумные приборы с электронным сканированием приемной мишени - пироконы.

Принципиально новое третье направление основано на применении «одновременно смотрящих», т.е. фокаль­но-плоскостных, твердотельных многоэлементных матриц без использования вообще оптико-механических систем развертки изображения. При этом, для обеспечения высокой температурной чувствительности матрицы на квантовых приемниках должны иметь криогенное охлаждение. При использовании пироэлектрических матриц исключаются вакуумная электронная оптика и фокусирующе-отклоняющая система.

Преобразователи с оптико-механическим сканиро­ванием (ПОМС) использовались главным образом на участке ИК-спектра 13... 15 мкм для анализа собственного теплового излучения объектов, пока не были созда­ны эффективные многоэлементные преобразователи

В приборах этого типа сканирование происходит перемещением объекта относительно неподвижного де­тектора излучения либо изменением направления оптической оси объектива с помощью системы вращающихся или колеблющихся зеркал.

Структурная схема тепловизора с оптико-меха­ническим сканированием включает приемную оптиче­скую систему 1, детектор ИК-лучей 2, сканирующую систему 3, обеспечивающую последовательный просмотр объекта по заданному закону, усилитель 4, систе­му развертки и синхронизации 5 и кинескоп 6 (рис. 1).

Принцип действия тепловизора заключается в про­смотре по заданному закону движения поверхности объ­екта узким оптическим лучом с угловым размером 8, сформированным системой объектив - приемник. Обзор происходит в пределах угла поля зрения (углы α и β) за время Т, которое принято называть временем кадра. Угол δ носит название мгновенного угла поля зрения.

Тепловизор позволяет выделять на тепловом изо­бражении объекта области одинаковых температур с по­мощью изотерм, высвечивающихся на кинескопе. В нижней части кадра формируется серая шкала, которая используется для измерения температуры. При этом яркость отдельных участков изображения объекта сравнивают с яркостью элементов шкалы, для которой при ка­либровке прибора определяют температурный перепад, соответствующий переходу от белого до черного.

Применение в тепловизорах узкополосных фильт­ров, прозрачных на длине волны 3, 39 мкм, где имеется окно прозрачности газа СО2, позволяет фиксировать ИК-излучение через пламя.

Наличие линзовой оптики позволяет легко изменять увеличение системы сменой объективов.Тепловизоры обычно имеют черно-белые или цветные видеомониторы и устройства аналоговой и цифро­вой обработки изображения (выделение изотерм, обращение контраста, представление в псевдоцветах, термопрофильное квазиобъемное представление теплового поля и т.п.).

В последнее время широко применяют тепловизионные системы с блоками цифровой памяти, имеющие интерфейс и работающие в комплексе с мини-ЭВМ.

Перспектива развития тепловизионных систем заключается в создании спектральных цифровых камер, в том числе, стереоскопических, а также разработке радиотепловизионных приборов для диапазона длин 0, 1... 1 мм, в котором многие диэлектрики прозрачны, и пред­ставляется возможность измерять их внутреннюю температуру.

Рис. 1. Функциональная схема тепловизора со сканированием по строкам и кадру: 1 – объектив; 2 и 3 – сканирующие зеркала; 4 – приемник излучения; 5 электронный тракт; 6 – видеоконтрольное устройство.

В усилительном устройстве обеспечена линейная зависимость выходного напряжения от измеряемой температуры, что позволяет измерять температуру изделий.

В 1980 - 90-е года были разработаны и широко пользовались тепловизионные приборы, используют». пироконы. Они обеспечивают телевизионный стандарт изображения: 625 строк при частоте кадров 50 Гц. Применен способ обработки сигнала, исключающий мерцание. Синхронный двигатель приводит во вращение обтюратор, который перекрывает падающее тепловое из­лучение с частотой 25 Гц. Сигнал от предусилителя поступает в процессор кадров, в котором запоминаются и вычитаются чередующиеся поля (полукадры), в результате полезная составляющая сигнала удваивается, а неравномерности фона и шумы мишени, имеющие посто­янную полярность, значительно уменьшаются. Далее чередующиеся поля инвертируются и формируется сигнал изображения постоянной полярности. Сигналы с усилителей «привязываются» к стандартному уровню черного в выходном сигнале. После выведения сигналов синхронизации и гашения полный сигнал, содержащий восемь градаций серого, может быть подан на любой монитор. Достигнуто температурное разрешение 0, 3 °С при 50 линиях на диаметре мишени и относительном отверстии объектива 1: 1.

Достоинством тепловизионных приборов с пироконом является возможность создания компактных малогабаритных приборов.

Тепловые приборы на пироконах занимали значи­тельное место в мобильных средствах контроля и обзора окружающей среды. Поскольку прибор не требует специального охлаждения, он хорошо подходит для длительного наблюдения и контроля в сложных условиях. (литература mybiblioteka.su - 2015-2016 год.)






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.