Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Уменьшение факторов риска сердечно-сосудистых заболеваний






Второй важной чертой профилактического действия тренированности при сердечно-сосудистых заболеваниях является способность предупреждать само возникновение этих заболеваний. Дан-


ный эффект в значительной степени определяется уменьшением вероятности развития у тренированных людей факторов риска, к которым в настоящее время относят атеросклероз, нарушения углеводного обмена и в том числе изменение толерантности к углеводам, нарушения жирового обмена я ожирение, гиперхолестеринемию, и т. д.

Возникновение и развитие этих факторов в основном обусловлено социальными явлениями, в число которых входит малоподвижный образ жизни, эмоциональные стрессы, вредные привычки — курение, употребление алкоголя, потребление высококалорийиой пищи, богатой холестерином и насыщенными жирами, употребление большого количества соли; кроме того, существенную роль в генезе факторов риска играет генетически обусловленная предрасположенность (наследственные гипертонии, ожирение, диабет и т. д.).

Адаптация к физическим нагрузкам оказывает глубокое влияние на липидный обмен и тем самым на развитие атеросклероза. По современным представлениям, решающую роль в патогенезе атеросклероза играет нарушение соотношения между содержанием липопротеинов низкой и высокой плотности в сторону преобладания липопротеинов низкой плотности, а также повышение содержания холестерина в плазме крови [Kannel W. et al., 1979; Malaspina J. et al., 1981; La Porte R. et al., 1984].

Одним из существенных компонентов системного структурного «следа» адаптации к физическим нагрузкам является рост функциональной активности системы митохондрий, что обеспечивает увеличение аэробной мощности организма и ускорение утилизации пирувата и жирных кислот. В связи с этим рост концентрации лактата в крови при нагрузках у адаптированных людей и животных оказывается меньшим, чем у неадаптированных. Поскольку лактат является ингибитором липаз, то отсутствие при адаптации выраженной лакцидемии увеличивает липолиз, т. е. возможность мобилизации жировых депо и утилизации жирных кислот в работающей мускулатуре.

Кроме того, имеются прямые данные, показывающие, что тренированность увеличивает у людей стимулируемый катехоламинами липолиз в жировых клетках [Despres J. et al., 1984].

В результате, как установлено в экспериментах на животных и наблюдениями на людях, тренированность приводит к увеличению степени мобилизации, утилизации и окисления свободных жирных кислот из жировых депо [Frielberg S. et al., 1960; Mole P. et al., 1971; Despres J. et al., 1984].

При этом показано, что адаптация вызывает также активацию синтеза триглицеридов в жировых клетках из глюкозы. Причем в основе этого явления лежит определенный компонент структурного «следа» адаптации, а именно увеличение интенсивности синтеза переносчиков глюкозы и ферментов, ответственных за превращение ее в триглицериды [Savard R. et al.,. 1985].

В настоящее время еще недостаточно известны процессы липолиза и их механизмы в мышечной ткани. Однако ряд получен-


ных в последние годы данных позволяет полагать, что гидролиз в сердце и скелетной мускулатуре осуществляется с помощью особых липопротеинлипаз, несколько отличных от тех, которые ответственны за гидролиз жиров в плазме крови, и что эти ферменты стимулируются при большой физической нагрузке и их активность при тренированности возрастает в 2—3 раза [Oscai L. et al., 1982; Oscai L., 1983; Spriet L. et al., 1985].

Все эти изменения оказывают глубокое влияние на весь липидный обмен в тренированном организме. Показано, что развитие тренированности сопровождается не только редукцией жировой ткани, но также значительным снижением содержания триглицеридов в ряде тканей и одновременным повышением в плазме крови концентрации липопротеинов высокой плотности в понижением концентрации липопротеинов низкой плотности в холестерина [Cooper К., 1982; Wood P. et al., 1983; Kiens В. et al., 1984].

На основании эпидемиологических исследований К. Cooper (1982) пришел к заключению, что в течение 70-х годов XX века в США уменьшилось, число людей с факторами риска ишемической болезни сердца в связи с тем, что в этот период сильно возросло число американцев всех возрастных групп, регулярно занимающихся физкультурой, т. е. «произошло изменение стиля жизни», в результате чего к 1980 г. 47% американцев ежедневно занимаются различными видами физических упражнений, в том числе от 27

Таблица 3. Факторы «коронарного риска» (М) в зависимости от физического состояния человека [Cooper К., 1982]

 

 

 

Физическое состояние человека Холестерин, мг на 100 мл (n=2514) Триглицериды, мг на 100 мл (n=2477) Глюкоза, мг на 100 мл (n=2468) Мочевая кислота, мг на 100 мл (n= 2472) АД, мм рт. ст. Количество жира в организме, % (n=2266)
систолическое (n=2905) диастолическое (n=2905)
Очень плохое 237, 1* 182, 1** 112, 8** 6, 9** 132, 6** 86, 6** 29, 3**
(229, 9*) (176, 8**) (110, 0**) (6, 7*) (127, 6**) (83, 4) (26, 1**)
n=294 n=290 n=290 n=290 n = 348 n=348 n =241
Плохое 238, 5** 171, 6** 107, 7** 7, 0** 126, 5* 83, 8* 26, 9**
(232, 9**) (163, 8**) (107, 3**) (6, 8**) (124, 9*) (82, 4) (25, 3**),
n=530 n=523 n=522 n=523 n=580 n=580 n=477
Удовлетворительное 228, 8* 144, 4** 105, 5* 6, 8** 124, 6* 83, 2* 24, 0**
(226, 9) (138, 7**) (105, 0) (6, 7*) (124, 4) (82, 2) (24, 0**)
n=767 n=759 n =755 n=758 n=871 n=871 n=711
Хорошее 222, 9 114, 3** 104, 0 6, 5 122, 5 80, 9 20, 8**
(225) (118, 9**) (105, 3) (6, 5) (123, 4) (81, 9) (22, 4**)
n = 670 n=665 n=663 n = 663 n = 797 n=797 n = 620
Отличное 217, 3 87, 4 102, 0 6, 3 122, 1 79, 8 18, 2
(221) (98, 3) (103, 4) (6, 4) (122, 9) (81, 1) (20, 8)
n=253 n=240 в =238 n=238 n=309 n=309 n=217
Примечание, n — число испытуемых; цифры в скобках в каждой графе — данные, пересчитанные с учетом возраста, массы тела и количества жира (%). * р< 0, 05. ** р< 0, 01.

 

Рис. 4. Изменение содержания ЛПВП-холестерина в плазме крови при тренировке к физической нагрузке (бег). А — нетренированные, Б — тренированные люди. 1, 2 — величина содержания липида соответственно до и после тренировки. Ордината — содержание липида, мМ/л; абсцисса — максимальное потребление 02, мл/кг • мин [по В. Kiens et al., 1984].

до 30 млн. человек бегают минимум по 1 миле 3 раза в нед. К. Cooper (1982) провел обследование 3000 человек в возрасте от 30 до 60 лет и выявил четкую корреляцию между физическим самочувствием, степенью тренированности к физическим нагрузкам и состоянием факторов риска ишемической болезни сердца. В частности, им было показано, что с ростом степени тренированности и физической выносливости снижается АД, масса тела и содержание в нем жира, уменьшается содержание в плазме крови общего холестерина, липопротеинов низкой плотности (ЛПНП), ЛПНП-холестерина, триглицеридов, глюкозы, мочевой кислоты и повышается содержание липопротеинов высокой плотности (ЛПВП), ЛПВП-холестерина. В качестве примера результатов этого исследования в табл. 3 приведены данные по сопоставлению уровня физического состояния человека, определяемого по степени тренированности и выносливости к тест-нагрузке и уровня факторов риска ишемической болезни сердца.

На рис. 4 представлены данные, полученные В. Kiens и соавт. (1984), которые изучали изменение содержания ЛПВП-холестерина в плазме крови у нетренированных и тренированных мужчин от 30 до 40 лет под влиянием тренировки бегом. При этом содержание липопротеинов сопоставляли с максимальным потреблением кислорода. Было установлено, как видно на рис. 4, что аэробная мощность и содержание ЛПВП-холестерина у тренированных людей значительно выше, чем у нетренированных, и что особенно существенно, — у обеих групп испытуемых тренировка на выносливость достоверно повышает как содержание липопротеинов высокой плотности в плазме крови, так и аэробную мощность организма, причем это происходит пропорционально длительности тренировки.

В недавних исследованиях Э. И. Зборовского и соавт. (1985), проведенных на 458 практически здоровых мужчинах от 40 до 59 лет, было сопоставлено влияние объема привычной двигательной активности (ходьбы, измеряемой численностью шагов за неделю) на резистентность к субмаксимальной физической нагрузке (тест на велоэргометре) на величину АД, индекс массы тела и на содержание общего холестерина в плазме крови. Выяснилось, что у испытуемых с высоким объемом привычной двигательной активности (более 76 000 шагов в неделю) значительно выше уровень мощности выполняемой тест-нагрузки, максимального потребления кислорода и ниже величины систолического и диастолического АД и содержания общего холестерина, чем у испытуемых с низкой привычной двигательной активностью (менее 40 360 шагов в нед).

В экспериментах, проведенных на алиментарной модели атеросклероза у обезьян, было показано, что тренированность к физической нагрузке в значительной мере ограничивала вызываемое атерогенной диетой развитие коронарного атеросклероза [Kramsch D. et al., 1981].


Завершая рассмотрение изменений липидного обмена при тренированности, как меры ограничения развития соответствующих факторов риска, отметим одно существенное обстоятельство, которое заключается в том, что нормализующее жировой обмен действие эпизодической физической нагрузки у нетренированных людей и животных весьма кратковременно, а у тренированных сохраняется значительно дольше [Scorpio S. et al., 1984].

Важным звеном патогенеза ишемической болезни сердца, гипертонической болезни и инсультов и в то же время фактором риска этих заболеваний являются нарушения реологических свойств крови, нормального соотношения в ней активности систем фибринолиза и свертывания, недостаточность вазодилататорной и депрессорной системы крови, нарушения микроциркуляции.

Исследования последних лет показали, что тренированность к физическим нагрузкам может способствовать ограничению нарушений процессов свертывания и фибринолиза при различных воздействиях, а также повышать мощность вазодилататорной, депрессорной гуморальной системы, а именно кининовой системы.

Так, исследованиями О. А. Гомазкова и соавт. [Гомазков О. А. и др., 1977; Гомазков О. А., 1977; Комиссарова Н. В., 1979] было показано, что у высокотренированных спортсменов в покое заметно снижена активность показателей системы свертывания крови и фибринолиза. Однако при больших нагрузках у них наблюдается увеличенная по сравнению с нетренированными испытуемыми активация системы с преимущественной мобилизацией ответственного за фибринолиз плазминового компонента.

Таким образом, тренированность повышает фибринолитический потенциал крови. В более поздних исследованиях L. Rocker и соавт. (1984) были получены близкие по существу результаты. Авторы показали, что в покое у людей, адаптированных и неадаптированных к физической нагрузке, свертываемость крови и активность системы фибринолиза одинаковы.

Однако во время 30-минутной нагрузки средней и высокой интенсивно^ сти у адаптированных людей наблюдается заметное увеличение активности в плазме крови первичного ингибитора коагуляции — антитромбина III. У неадаптированных людей такой активации не происходит. Явление повышения фибринолитического потенциала крови у тренированных людей обсуждалось в недавней работе I. Huisveld и соавт. (1984). Подчеркивая сложность проблемы и наличие недостаточной ясности в понимании механизмов изменения системы свертываемости крови при тренированности, авторы пришли к заключению, что у адаптированных людей значительно повышена способность плазминовой системы крови к активации, что, как предполагается, обусловлено у них более интенсивной мобилизацией факторов, активирующих высвобождение плазминогена из стенки сосуда и образование плазмина.

В обеспечении адаптационных возможностей кровообращения существенное значение имеет состояние депрессорной кининовой системы крови и почек; истощение ее компенсаторных резервов в ответ на длительное усиление продукции прессорных гормонов является одним из механизмов становления гипертонической болезни; [Ланцберг Л. А., Некрасова А. А., 1972; Шхвацабая И. К.,


и др., 1975, 1980]. Показано, что у больных гипертонической болезнью активность кининовой системы крови в покое повышена, однако при нагрузках функционирование этой системы оказывается нарушенным [Гомазков О. А. и др., 1977; Шхвацабая И. К. и др., 1980; Хамазюк И. Н., Халтагарова В. Н., 1983].

В частности, в исследованиях И. Н. Хамазюка и В. Н. Халтагаровой (1983) выявлено, что у большинства обследованных больных гипертонической болезнью I и II степени наблюдается снижение функциональных возможностей кининовой системы крови при физической нагрузке и в период восстановления. Это выражается нарушением корреляции между изменением содержания предшественников и ингибиторов калликреина, что сопровождается повышенной гипертензивной реакцией и снижением порога нагрузки. Лишь у 17% больных наблюдалась адекватная реакция кининовой системы крови на нагрузку, что коррелировало с близкими к норме показателями гипертензивной реакции на нагрузку и максимальным значением пороговой нагрузки. При анализе данных выяснилось, что этот более благоприятный тип состояния кининовой системы характерен для больных с профессиями, требующими более высокой физической подготовки. Эти данные наряду с другими свидетельствуют, что компенсаторные возможности кининовой системы играют важную роль в ограничении гипертензивных реакций организма и, что наиболее существенно для нашего изложения, они показывают, что тренированность повышает резистентность кининовой системы к нагрузкам, что сопровождается уменьшением тяжести течения гипертонической болезни.

Прямые исследования изменений функциональных возможностей кининовой депрессорной системы при адаптации к физическим нагрузкам и роли этих изменений в повышении резистентности организма человека к гипертензивным состояниям были проведены И. К. Шхвацабая и соавт. (1975). Они показали, что систематические физические тренировки приводят к изменению возможностей и уровня функционирования кининовой системы крови и почек в покое и при нагрузках. Кининовая система крови при тренированности характеризуется более экономной активностью в покое и менее выраженной активацией при нагрузках; кининовая система почек при этом характеризуется более высокой активностью в покое и значительной активацией при нагрузках. В результате у нетренированных людей нагрузка, близкая к предельной, вызывает резкое снижение активности кининовой системы в почках и повышение ее активности в крови, а у тренированных людей (спортсменов) при аналогичной нагрузке происходит повышение активности кининовой системы почек и менее выраженная мобилизация системы крови,

Такие изменения отражают повышение устойчивости кининовой системы к нагрузкам и тем самым, по мнению авторов, являются фактором профилактики гипертензивных состояний и в том числе — гипертонической болезни. Существо профилактического значения этих сдвигов при развитии гипертонической болезни состоит, в частности, в том, что они могут предупреждать или задерживать включение в патогенез болезни почечно-ишемического и солевого факторов,







© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.