Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Влияние на фотосинтез условий освещения (работы В.Н. Любименко).






При низких интенсивностях света существует прямая пропорциональная зависимость между интенсивностью падающего на растение света и фотосинтеза. По мере увеличения интенсивности света нарастание фотосинтеза становится все менее выраженным, и, наконец, при достижении определенного уровня освещенности наступает насыщение фотосинтетической активности листа (плато световой кривой фотосинтеза). Анализ световой кривой фотосинтеза послужил основанием для представления о существовании в этом процессе световых, фотохимических, реакций, прямо пропорционально зависящих от интенсивности света, и «темновых», энзиматических, реакций, скорость которых становится лимитирующей при высоких интенсивностях света. Зависимость световых реакций фотосинтеза от интенсивности света отражает прямолинейный участок световой кривой. На этом этапе интенсивность света является лимитирующим фактором фотосинтеза. Угол наклона прямолинейного участка световой кривой характеризует эффективность использования световой энергии в ходе фотохимических реакций. Условия внешней среды, активирующие углеродные циклы растения (такие, как температура и концентрация С02), позволяют ему более эффективно использовать высокие интенсивности света. На световой кривой фотосинтеза обычно отмечается световой компенсационный пункт' (СКП) — наименьшая интенсивность света, при которой активности фотосинтеза и дыхания растений уравновешены по газообмену. Положение СКП зависит от соотношения фотосинтеза и темнового дыхания и меняется в зависимости от температуры и концентрации углекислого газа в среде.

Интенсивность света влияет на характер фотохимических и метаболических процессов в хлоропластах. При низких интенсивностях света в первую очередь активируется нециклический поток электронов. Увеличение интенсивности света стимулирует циклический поток электронов и повышает долю циклического транспорта электронов в общем потоке электронов по ЭТЦ хлоропластов. В условиях избыточной освещенности циклический транспорт электронов может играть защитную роль в хлоропластах, а также служить источником энергии для дополнительного синтеза АТФ и тем самым способствовать активации процессов ассимиляции углерода. С интенсивностью света связано образование различных продуктов фотосинтеза. Так, при слабой освещенности образуются главным образом аминокислоты, тогда как синтез углеводов в хлоропластах требует высокой интенсивности света.

Спектральный состав света определяет общую интенсивность фотосинтеза, активность его отдельных реакций и набор синтезируемых продуктов. Кривая зависимости интенсивности фотосинтеза от качества света при выровненном количестве квантов (спектр действия фотосинтеза) демонстрирует два отчетливых максимума — в синей и красной области спектра, совпадающих со спектрами поглощения фотосинтетических пигментов. Максимумы поглощения отражают наиболее эффективное использование этих лучей при фотосинтезе. При выравнивании синего и красного освещения по квантам на синем свету у растений увеличивалась общая активность ассимиляции С02, что было обусловлено активацией в этих условиях транспорта электронов в ЭТЦ хлоропластов и ферментов углеродного цикла. Качество света определяло и состав продуктов, образующихся при фотосинтезе. Так, на синем свету преимущественно синтезировались органические кислоты и аминокислоты, а позднее — белки, тогда как красный свет индуцировал сначала синтез растворимых углеводов, а в дальнейшем — крахмала.

 

лет. Однако содержание С02 в атмосфере непрерывно пополняется за счет растворенных в воде карбонатов и бикарбонатов. Кроме того, углекислый газ выделяется из почвы в результате различных микробиологических процессов, связанных с окислением органических веществ (до 25—30 кг С02 на 1 га в сутки) и др. Учитывая значение процесса фотосинтеза, раскрытие его механизма является одной из наиболее важных и интересных задач, стоящих перед физиологией растений.

 

 

58. Темновая фаза фотосинтеза. Цикл Кальвина: карбоксилирование, восстановление и регенерация.

С3-путь или цикл Кальвина. Этот способ ассимиляции СО2, присущий всем растениям. Характерной особенностью фотосинтетического восстановления СО2 являются цикличность и разветвленность этого процесса. Цикличность обеспечивает высокую производительность, саморегуляцию и непрерывность образования углеводов. Разветвленность — образование разнообразных продуктов, дублирование путей регенерации акцептора СО2. Цикл состоит из трех этапов: карбоксилирования, восстановления и регенерации акцептора СО2.

Карбоксилирование. Первой реакцией, вводящей СО2 в цикл Кальвина, является карбоксилирование рибулезо-1, 5-дифосфата (1, 5-РДФ) с участием фермента рибулезодифосфаткарбоксилазы (РДФ-карбоксилазы). Образующееся при этом нестойкое шести-углеродное соединение быстро распадается на триозы — две молекулы 3-фосфоглицериновой кислоты (3-ФГК). Поэтому 3-ФГК можно считать первичным продуктом фотосинтеза.

Фаза восстановления. Восстановление 3-фосфоглицериновой кислоты (3-ФГК) до 3-фосфоглицеринового альдегида (3-ФГА) происходит в два этапа. Сначала при участии АТФ и фосфогли-цераткиназы 3-ФГК присоединяет остаток фосфорной кислоты с образованием 1, 3-дифосфоглицериновой кислоты (1, 3-дФГК). Этим достигается повышение реакционной способности соединения и возможность его восстановления с помощью НАДФН до 3-ФГА. Это единственная восстановительная реакция цикла, фосфоглицериновый альдегид по уровню восстановленности углерода соответствует углеводу с общей формулой (СН20)3. Фаза восстановления является центральным звеном цикла. Именно здесь скрещиваются световая и темновая фазы фотосинтеза. Все остальные превращения идут на уровне Сахаров, одинаковых по степени восстановленности.

Фаза регенерации первичного акцептора СО2 и синтеза конечных продуктов фотосинтеза. В результате рассмотренных ранее реакций при фиксации трех молекул СО2 образуются 6 молекул восстановленных 3-фосфотриоз, пять из них используются затем для регенерации рибулезодифосфата, а одна — для синтеза глюкозы. Это достигается следующей последовательностью реакций. Часть молекул 3-ФГА под действием триозофосфатизомеразы превращается в фосфодиоксиацетон (ФДА). Затем два изомера (ФГА и ФДА) подвергаются конденсации' при участии фермента альдолазы, образуя фруктозо-1, 6-дифосфат, у которого затем отщепляется один фосфат. В дальнейших реакциях, связанных с регенерацией акцептора С02, возникает цепь фосфорных эфиров Сахаров, содержащих в своем составе 4, 5 или 7 атомов углерода. В этих реакциях последовательно принимают участие транскето-лазы и альдолазы. Транскетолаза катализирует перенос двухугле-родной группировки от фруктозо-6-фосфата на 3-ФГА, при этом образуются эритрозо-4-фосфат (С4) и ксилулозо-5-фосфат (С5). Затем альдолаза осуществляет перенос трехуглеродного остатка ФДА на эритро-4-фосфат, в результате чего синтезируется седо-гептулозо-1, 7-дифосфат (С7). От последнего отщепляется один остаток фосфорной кислоты и под действием транскетолазы из него и 3-ФГА образуются ксилулозо-5-фосфат (С5) и рибозо-5-фосфат (С5). Две молекулы ксилулозо-5-фосфата путем эпимеризации и одна молекула рибозо-5-фосфата за счет изомеризации превращаются в три молекулы рибулозо-5-фосфата (С5). Это соединение подвергается фосфорилированию за счет АТФ, которую поставляет световая фаза фотосинтеза, с образованием рибу-лозо-1, 5-дифосфата. Цикл при этом замыкается.

Из оставшейся неиспользованной шестой молекулы 3-ФГА при повторении цикла под действием альдолазы синтезируется фруктозо-1, 6-дифосфат, из которого могут образоваться глюкоза, сахароза или крахмал. Таким образом, для синтеза одной молекулы глюкозы (С6) должно произойти шесть оборотов цикла. В каждом обороте цикла используются три молекулы АТФ (две для активирования двух молекул

Фотохимический этап фотосинтеза. Циклический и нециклический транспорт электронов. Первая и вторая фотосистемы. Эффект Эмерсона. Общее уравнение циклического и нециклического фотофосфорилирования. Ассимиляционная сила.

Фотохимические реакции фотосинтеза — это реакции, в которых энергия света преобразуется в энергию химических связей, и в первую очередь в энергию фосфорных связей АТФ. Именно АТФ является энергетической валютой клетки, обеспечивающей течение всех процессов. Одновременно под действием света происходит разложение воды, образуется восстановленный НАДФ и выделяется кислород. Энергия поглощенных квантов света стекается от сотен молекул пигментов ССК к фотохимическому реакционному центру, содержащему особую пару (димер) молекул хлорофилла а, которые характеризуются поглощением в наиболее длинноволновой части солнечного спектра и выполняют роль ловушки энергии возбуждения, блуждающего по пигментам ССК. Наряду с димером хлорофилла в фотосинтетический комплекс входят молекулы первичного и вторичного акцепторов электрона. Молекула хлорофилла, отдавая электрон первичному акцептору, окисляется. Электрон поступает в электронтранспортную цепь. Совокупность светособирающего комплекса (ССК), фотохимического реакционного центра и связанных с ним молекул — переносчиков электрон составляет фотосистему. По современным представлениям фотосистема является важнейшим структурно-функциональным звеном фотосинтетического аппарата.

Фотосистема I и фотосистема II: основные сведения

× Пигменты растений, участвующие в фотосинтезе, " упакованы" в тилакоиды хлоропластов в виде функциональных фотосинтетических единиц, называемых фотосистемами. Имеются два типа фотосистем: фотосистема I и фотосистема II. Каждая фотосистема содержит 250-400 молекул пигментов. Все пигменты фотосистемы могут поглощать частицы световой энергии, называемые фотонами или квантами света, но только одна молекула хлорофилла данной фотосистемы может использовать поглощенную энергию в фотохимических реакциях. Эта молекула называется реакционным центром фотосистемы, а другие молекулы пигментов называются антенными, поскольку они улавливают энергию света, подобно антеннам, для последующей передачи реакционному центру. Благодаря разнообразию пигментов по их способности к поглощению в разных частях спектра, спектр видимого света используется весьма полно В фотосистеме I реакционный центр образован особой молекулой хлорофилла а, обозначаемой как Р700 (Р от англ. pigment - пигмент), где 700 - оптимум поглощения в нм. Реакционный центр фотосистемы II также образован молекулой хлорофилла а и обозначается индексом P680, поскольку оптиум поглощения лежит в районе 680 нм. Фотосистемы I и II работают обычно синхронно и непрерывно, но фотосистема I может функционировать отдельно.Эффект Эмерсона - увеличение темпа фотосинтеза после подвергания свету длины волны 670 nm далекий красный свет и 700 nm, красный свет соответственно. Когда одновременно выставлено осветить обеих длин волны темп увеличений фотосинтеза.

В 1957 Роберт Эмерсон наблюдал это. С его имени это называют Эмерсоном Эффектом.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.