Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






ЭПЮРЫ КАСАТЕЛЬНЫХ НАПРЯЖЕНИЙ КРУГЛОГО СЕЧЕНИЯ




Для построения эпюры касательных напряжений круглого сечения выясним направлениекасательных напряжений при изгибе, возникающих в некоторой точке контура поперечного сечения стержня.

Рассмотрим произвольное поперечное сечение стержня (рис. 7.13, а).

Предположим: в некоторой точке контура К касательное напряжение при изгибе направлено произвольно по отношению к контуру. Разложим касательное напряжение на две составляющие и , направленные соответственно по нормали и касательной к контуру. Если касательное напряжение существует, то по закону парности касательных напряжений на поверхности стержня должно существовать равное ему по значению касательное напряжение при изгибе . Поскольку поверхность стержня свободна от внешних сил, параллельных оси балки z, касательное напряжение на поверхности стержня и, следовательно, .

Таким образом, в точке контура поперечного сечения, поверхность которого не нагружена продольными внешними нагрузками, касательное напряжение при изгибе направлено по касательной к контуру.

Покажем, что в вершине угла поперечного сечения стержня касательное напряжение равно нулю (рис. 7.13, б).

Предположим, что в вершине угла (в точке M) возникает касательное напряжение . Разложим его на составляющие касательные напряжения и . По закону парности касательных напряженийэти составляющие равны нулю, поскольку равны нулю напряжения на поверхности стержня и .

 
 

Задача вычисления касательных напряжений в произвольной точке балки круглого поперечного сечения усложняется. Однако если сделать предположение: в точках, расположенных на некоторой линии ab (рис. 7.14), касательные напряжения при изгибе направлены так, что все они пересекаются в точке О, и вертикальные проекции этих напряжений равномерно распределены вдоль линии ab, то формулу Журавского можно использовать для вычисления вертикальных проекций при построении эпюр касательных напряжений стержня круглого сечения. Вычисление остальных величин, входящих в формулу Журавского, производится, как и для прямоугольного поперечного сечения.

Наибольшие касательные напряжения, возникающие в точках, расположенных на нейтральной оси x, вычисляются по формуле:

- формула Журавского


mylektsii.ru - Мои Лекции - 2015-2018 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал