Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Коррекция дисбактериоза






Первый этап (и самый важный) - выявление острого или хронического заболевания, которое стало причиной нарушения кишечной микрофлоры и соответствующее лечение этого заболевания, нормализация процессов всасывания, моторики и пищеварения желудочно-кишечного тракта.

Второй этап коррекции микрофлоры - это применение пробиотиков. Это группа препаратов на основе микроорганизмов - представителей нормальной микрофлоры человека. В основном используются различные виды бифидо- и лактобактерий, энтерококков, кишечной палочки, стрептококков, сахаромицетов. Пробиотики, поступая в кишечник, изменяют не только состав, но и функцию его микрофлоры. Установлено, что бактерии-пробиотики препятствуют развитию патогенной флоры в кишечнике и стимулируют развитие собственных защитных (иммунных) сил. У детей с нарушенным перевариванием молочного сахара (лактозы) такие бактерии, как стрептококки и лактобактерии, улучшают ее расщепление и всасывание. Кроме того, у препаратов этой группы практически нет никаких побочных эффектов.

Третий этап - лечебное питание, соответствующее основному заболеванию. На этом этапе желательно использовать продукты, стимулирующие развитие нормофлоры: изделия из ржи, кукурузы, гречихи, проса, капусту, морковь, кабачки, томаты, огурцы, свежие фрукты, неконсервированные соки, орехи, кисломолочные продукты.
В повседневном рационе рекомендуется постоянное наличие продуктов естественного происхождения, содержащих живые бифидо- и лактобактерии, бифидогенные факторы, пищевые волокна.Но необходимо отметить, что широко рекламируемые антиоксидантные добавки, у детей используются с большой остсрожностью в силу физиологических особенностей обмена веществ - незрелость некоторых ферментных систем может изменить процесс трансформации антиоксидантов в организме и привести вместо защитного к онкогенному и мутагенному эффектам.
При наличии у ребенка симптомов повышенного брожения (обычно, при переизбытке или нарушении всасывания углеводов пищи) - метеоризм, жидкий стул с резким кислым запахом и непереваренными остатками пищи - полностью исключается из питания цельное молоко, в том числе в готовых блюдах. На 4-10 дней исключают или уменьшают количество белых каш, картофельного пюре, киселей, сладких фруктов, сладостей, белого пшеничного хлеба, сдобы, изделий из цельного зерна с отрубями, орехи, бобовые, капусту, жилистое мясо, кисломолочные продукты, сладкие яблоки, бананы, виноград, огурцы. На 3 дня назначают отварное мясо нежирных сортов, омлет, серый хлеб, обезжиренный пресный творог, затем подключают каши, содержащие повышенное количество белка (гречневая, овсяная), еще через 3 дня -картофель, через 10дней - сладости.
При переизбытке в питании белка может развиться гнилостная диспепсия - появляются признаки интоксикации, метеоризм, спастические боли в нижних отделах живота, жидкий стул с гнилостным зловонным запахом. В этом случае исключается белковая пища - мясо, рыба, сыр, творог, бобовые, орехи, яйца, манная, гречневая и овсяная крупы, а также грубая клетчатка. На 2 дня назначают голод, отвар шиповника, подслащенный чай.
Через 2 дня разрешают сладости, сухарики. С 5дня дают рисовую кашу наполовину с водой, овощные блюда, кисломолочные продукты - йогурты, сметану, ряженку, кефир.
Если у ребенка имеется учащенный и разжиженный стул, то в питании предпочтительно использовать подсушенный пшеничный хлеб, слизистые супы на обезжиренном мясном или рыбном бульоне, или на овощном отваре с хорошо разваренными крупами, нежирные сорта мяса и рыбы в виде паровых котлет, кнелей, суфле, протертые овощные пюре, овощные запеканки, каши на воде (кроме пшеничной и перловой), кисели, желе, протертые компоты из сладких ягод, печеные яблоки.
При запорах в рацион включаются салаты из свежих овощей, зелень, печеные яблоки, тушеные овощи, разбавленные овощные и фруктовые соки с мякотью. Ускоряют опорожнение кишечника кислое молоко, кумыс, свежий кефир, простокваша, кислые фрукты и соки, мед, сироп, сахар, сладкие мучные изделия, соления, газированные напитки.
Детям, страдающим запорами, обогащают рацион продуктами, богатыми пищевыми волокнами - изделия из цельных зерен, гречневая и овсяная крупы, орехи (миндаль, арахис, фисташки), бобовые, капуста, абрикосы, ежевика, сухофрукты, киви, петрушка, попкорн, свекла, морковь. Дополнительно можно дать пшеничные отруби (3-6 столовых ложек в сутки с едой, предварительно обдав их кипятком), морскую капусту, льняное семя, препараты из семян подорожника (" Мукофальк" - 10-30г в сутки) - при этом нужно обязательно значительно увеличить объем жидкости в сутки - до 1, 5-2 литров.

 

7 Эубиотики и пробиотики

ПРОБИОТИКИ (ЭУБИОТИКИ)

Препараты, содержащие культуры живых микроорганизмов. Пробиотики восстанавливают нормальный микробиоценоз. Находясь в кишечнике, они размножаются, угнетают патогенные и условно-патогенные микроорганизмы и создают благоприятные условия для развития нормальной микрофлоры.

В присутствии пробиотиков происходит индукция антител (IgA), активизация фагоцитарной функции лейкоцитов. Микроорганизмы, входящие в состав пробиотиков не патогенны, не токсичны, сохраняют жизнеспособность при прохождении через все отделы ЖКТ. Состав микроорганизмов, входящих в препараты пробиотиков, разнообразен и поэтому условно их можно разделить на несколько групп.

1. Монокомпонентные препараты:

– препараты, содержащие штамм одного вида бактерий.

Колибактерин (Escherichia coli штамма М 17), Бифидумбактерин (

Bifidobacterium bifidum штамм 1).

– препараты, содержащие несколько штаммов бактерий одного вида.

Ацилакт, Аципол, Лактобактерин содержат смесь активных штаммов лактобактерий.

– сорбированные препараты.

Это один из видов монокомпонентных препаратов в особой лекарственной форме.

Бифидумбактерин форте и Пробифор содержат бактерии активного штамма Bifidobacterium bifidum No 1 адсорбированные на носителе – косточковом активированном угле. Иммобилизованные на частицах угля бифидобактерии быстро заселяют слизистую оболочку толстого кишечника и обеспечивают высокую локальную колонизацию. Препараты проявляют антагонизм к широкому спектру патогенных и условно-патогенных микроорганизмов, адсорбируют и выводят из кишечника токсины.

2. Поликомпонентные препараты

Они состоят из нескольких видов бактерий.

Линекс – содержит живые лиофилизированные бактерии Bifidobacterium infantis v. liberorum, Lactobacillus acidophilus, Enterococcus faecium. Преимущество препарата Линекс состоит в том, что его можно принимать одновременно с антибиотиками и другими химиотерапевтическими средствами.

Бификол содержит микробную массу совместно выращенных живых бифидобактерий и кишечной палочки.

Бифиформ содержит Bifidobacterium longum и Enterococcus faecium.

Такое сочетание нормализует микрофлору кишечника и обеспечивает подавление значительного числа видов патогенных и условно-патогенных бактерий. Линекс и Бифиформ выпускаются в специальных капсулах, оболочка которых устойчива к действию желудочного сока. Это позволяет высвободить бактерии непосредственно в кишечнике.

3. Препараты конкурентного действия

Они содержат бактерии, вытесняющие условно-патогенную микрофлору и в дальнейшем не колонизирующие кишечник.

Бактисубтил. В его состав входят споры бактерий Bacillus cereus IP 5832.

Споры устойчивы к действию желудочного сока. Прорастание спор бактерий происходит в кишечнике. Вегетативные формы бактерий продуцируют ферменты, которые способствуют образованию кислой среды, препятствующей процессам гниения и избыточного газообразования. Прорастание спор сопровождается интенсивной продукцией антибиотических веществ. Bacillus cereus IP 5832 проявляют выраженное антагонистическое действие к бактериям рода Proteus, Escherichia coli, Staphilococcus aureus.

Энтерол содержит микроорганизмы Saccharomyces boulardii, которые обладают прямым антимикробным действием в отношении широкого спектра бактерий:

Clostridium difficile, Candida albicans, Candida krusei, Candida pseudotropicalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium, Yersinia enterocolitica, Escherichia coli, Shigella dysenteriae, Staphilococcus aureus и простейших: Entamoeba histolitica, Lambliae.

Бактиспорин, Споробактерин содержат суспензию сенной палочки (Bacillus subtilis), которая выделяет антибактериальную субстанцию – антибиотик

белковой природы, подавляющий развитие эшерихий, стафилококков, стрептококков, протеев, клебсиелл и других микроорганизмов.
Пребиотики

Различные вещества, положительно влияющие на рост и активность микроорганизмов, присутствующих в ЖКТ. Пребиотики не подвергаются гидролизу пищеварительными ферментами человека, не абсорбируются в верхних отделах тонкого кишечника. Они достигают нижних отделов кишечника и усваиваются преимущественно бифидобактериями, оставаясь малодоступными для других видов микроорганизмов.

Пребиотиками являются ксилит, сорбит, фруктоолигосахариды, галактоолигосахариды, лактулоза, лацитол, инулин, валин, аргинин, глутаминовая кислота, пищевые волокна. Пребиотики содержатся в молочных продуктах, кукурузных хлопьях, крупах, хлебе, луки репчатом, цикории полевом, чесноке, фасоли, горохе, артишоке, бананах, топинамбуре и др. Они служат источником энергии для микроорганизмов. Пребиотики сбраживаются бифидобактериями до уксусной, молочной и других кислот, что ведет к снижению рН внутри толстой кишки и создает неблагоприятные условия для развития других родов бактерий, например сальмонелл. Образовавшиеся кислые продукты и другие метаболиты подавляют развитие гнилостной микрофлоры. В результате этого уменьшается количество колоний патогенных бактерий и токсичных метаболитов (аммиака, скатола, индола и др). Пребиотики не токсичны, их можно применять длительно.

8 Санитарно показательные микроорганизмы

Санитарно-показательные микроорганизмы являются постоянными обитателями поверхностей и полостей человеческого или животного организма. Обнаружение и в объектах внешней среды свидетельствует о загрязнение выделениями человека или животного. Чем обильнее такое загрязнение, тем больше возможность попадания в объект патогенных микробов. Санитарно-показательными микроорганизмами могут быть только те, которые постоянно и в больших количествах содержатся в выделениях человека или животного, они должны сохранять жизнеспособность во внешней среде в течение сроков, близких к срокам выживания патогенных микробов, выделяемых теми же путями, но не размножаться интенсивно во внешней среде. Они должны также легко обнаруживаться современными и довольно простыми методами исследования. Основными санитарно-показательными микроорганизмами в отношении кишечных инфекций, указывающими на фекальное загрязнение внешней среды (вода, почва), считают бактерии группы кишечных палочек (БГКП). В качестве дополнительных показателей при оценке некоторых объектов определяют наличие фекальных стрептококков (энтерококков) и клостридий.


Кишечные палочки как санитарно-показательные микробы наиболее полно соответствуют требованиям, предъявляемым к таким микроорганизмам. Они являются постоянными обитателями кишечника человека и теплокровных животных, в больших количествах выделяются в окружающую среду. Сроки их выживания во внешней среде немного превышают сроки сохранения патогенных представителей кишечных бактерий в тех же условиях или совпадают с ними.


К БГКП относятся не только эшерихии, но и представители родов цитробактер, энтеробактер, клебсиеллы. Для них характерны следующие признаки: короткие, грамотрицательные, неспорообразующие палочки, на среде Эндо они растут в виде темно-красных колоний с металлическим блеском или без него либо в виде розовых колоний с темным центром; сбраживают лактозу и глюкозу при 37°С в течение 24 ч с образованием кислоты и газа, не обладают оксидазной активностью. Отрицательная оксидазная проба позволяет дифференцировать семейство Enterobacteriaceae от грамотрицательных бактерий семейства Pseudomonadaceae и других водных сапрофитов, обладающих ферментом оксидазой.

Все БГКП попадают во внешнюю среду только из кишечника человека и животных. Наибольшее санитарно-показательное значение в этой группе имеет E. coli, присутствие которой, например, в питьевой воде, рассматривается как признак свежего хозяйственно-бытового загрязнения, несомненно, фекального происхождения.
Присутствие энтерококков считают дополнительным показателем фекального загрязнения воды и других объектов. Однако их выделение требует сред более сложных при приготовлении и растут они медленнее. Энтерококки являются нормальными обитателями кишечника, но выделяются во внешнюю среду в меньших количествах, чем кишечные палочки. Энтерококки быстрее отмирают в воде и почве. Как правило, они не размножаются в этих объектах, что позволяет рассматривать их как показатель свежего фекального загрязнения.


К санитарно-показательным клостридиям относят группу грамположительных, спорообразующих анаэробных палочек, редуцирующих сульфит на сульфит-неомицинполимиксиновой среде (СПН) при инкубации в условиях 45°С в течение 12—24 ч. Эта группа в основном представлена CI. perfringens, которые встречаются в кишечнике большинства людей в значительно меньших количествах, чем кишечная палочка. Клостридии более, устойчивы, чем не образующие спор БГКП и энтерококки. Определение санитарно-показательных клостридий рекомендуют проводить в почве и воде, используемой на предприятиях пищевой промышленности, а также при выборе новых источников водоснабжения.


Санитарно-показательными микроорганизмами загрязнения воздуха закрытых помещений являются стафилококки (Staph, aureus), а также зеленящие и гемолитические стрептококки, постоянно обитающие на слизистой оболочке верхних дыхательных путей и выделяющиеся в воздушную среду при разговоре, кашле, чиханье. Во внешней среде стрептококки сохраняют жизнеспособность в течение примерно тех же сроков, что и возбудители дифтерии, а стафилококки — даже дольше. Чем большее количество стрептококков обнаруживают в воздушной среде, тем вероятнее возможность заражения человека воздушно-капельными инфекциями. Нарастание обсемененности воздуха Staph, aureus и частое его обнаружение свидетельствуют о санитарно-эпидемиологическом неблагополучии. В лечебных учреждениях вторичным источником обсеменения воздуха Staph, aureus могут быть загрязненные постельные принадлежности, белье, с которых эти микроорганизмы попадают в воздух, Наиболее полную картину воздушно-капельного загрязнения воздуха дает определение и стрептококков и стафилококков. Однако ввиду того, что стрептококки довольно трудно культивировать, в лабораторной практике ограничиваются выделением Staph, aureus.

 

10 Санитарно бактериологический контроль воды

Цели и задачи санитарно-микробиологического исследования воды. Поскольку вода используется при производстве любого вида продукции, а также непосредственно в пищу, соответствие ее качества санитарно- микробиологическим показателям чрезвычайно важно. Водным путем могут передаваться кишечные инфекции - холера, брюшной тиф и паратифы, сальмонеллез, дизентерия, гепатит А, полиомиелит, а также лептоспирозы, сибирская язва, туляремия, туберкулез, сап, Ку-лихорадка, различные грибковые заболевания. В связи с этим основной целью санитарно- микробиологического исследования воды является определение наличия в воде патогенной и условно-патогенной микрофлоры, и, следовательно, источника этого попадания, а также предупреждение распространения инфекционных заболеваний среди населения.

Санитарно-микробиологическое исследование воды проводится в следующих случаях:

1) при выборе источника централизованного хозяйственно- питьевого водоснабжения и периодическом контроле этого источника;

2) при контроле эффективности обеззараживания питьевой воды централизованного водоснабжения;

3) при наблюдении за подземными источниками централизованного водоснабжения, за такими как артезианские скважины, почвенные воды и т. д.;

4) при определении состояния и степени пригодности воды источников индивидуального водопользования (колодцев, родников и т.д.);

5) при наблюдении за санитарно-эпидемиологическим состоянием воды открытых водоемов: водохранилищ, прудов, озер, рек;

6) при контроле эффективности обеззараживания воды плавательных бассейнов;

7) при проверке качества и степени очистки сточных вод;

8) при определении очага водных вспышек инфекционных болезней.

Вода для санитарно-бактериологического анализа забирается в объеме 0, 5 л в стеклянные бутыли или флаконы, закрытые ватно-марлевыми пробками и завязанные сверху бумажными колпачками. При необходимости исследования воды на присутствие возбудителей кишечных инфекций количество воды увеличивают до 2, 5 л. Для взятия проб питьевой воды используют склянки емкостью 0, 5—1 л. При взятии проб воды из кранов, их предварительно обжигают пламенем горящего ватного тампона, смоченного спиртом, затем полностью открывают и в течение 10 мин воду спускают. Воду наливают в бутыли с соблюдением стерильности, не смачивая горлышко, чтобы не допустить замачивания пробки. Родниковую воду берут непосредственно из струи или из середины текущего родника, на расстоянии 10- 15 см от поверхности и дна. Артезианскую и колодезную воду забирают на глубине 10—15 см от поверхности воды. Из проруби пробы отбирают на глубине 10—15 см от нижнего края льда. Из открытых водоемов, как правило, берут серию проб на разном удалении от берега на различной глубине с учетом места водозабора и движения воды.

 

10 Микрофлора почвы

Почва является основной средой обитания многих микробов. Отсюда они поступают в воду и обсеменяют воздух. Количество микроорганизмов в почве значительно: от сотен миллионов до миллиардов особей в 1 г почвы. Состав и количество микрофлоры почвы зависят от ее влажности, температуры, от характера и количества питательных веществ в ней, кислотности. Плодородные, возделываемые почвы с большим количеством органических веществ содержат значительно большее число микроорганизмов, чем глинистые почвы и почвы пустынь. Распределение микробов в почве неравномерно. Самый поверхностный слой толщиной 1—2 мм содержит мало микроорганизмов, так как они быстро отмирают под действием солнечных лучей и высыхания. Следующий слой, глубиной 10—20 см, наиболее обсеменен разнообразными микроорганизмами, под влиянием которых в нем протекают бурные биохимические процессы. По мере увеличения глубины количество микробов постепенно уменьшается, но их обнаруживают даже на значительной глубине. Так, найдены жизнеспособные микробы в глубинных отложениях, образовавшихся много миллионов лет назад. Микрофлора почвы чрезвычайно разнообразна. В ней встречается множество видов бактерий: гнилостные, нитрифицирующие, азотфиксирующие, разлагающие клетчатку, серобактерии и др. Среди них могут быть аэробы и анаэробы, спорообразующие и неспорообразующие. В почве содержатся разнообразные грибы, простейшие, водоросли, вирусы.


Значение микрофлоры почвы очень велико. Благодаря жизнедеятельности микробов происходят разложение и минерализация животных и растительных остатков, по-падающих в почву, процесс самоочищения ее от нечистот и отбросов. С помощью микроорганизмов почвы осуществляются биологический круговорот многих минеральных элементов (углерод, азот, фосфор), биологическая фиксация атмосферного азота. Микроорганизмы участвуют также в изменениях структуры и химического состава органической фракции почвы. Многие грибы и актиномицеты, находящиеся в почве, являются продуцентами антибиотиков — пенициллина, стрептомицина и др. Соотношения между разными группами микроорганизмов в почвах неодинаковы и могут быстро изменяться под действием тех или иных факторов.


Патогенные микроорганизмы могут попасть в почву с выделениями человека и животных. Эти микробы делятся на три группы.

К первой группе относятся патогенные микробы, для которых почва является постоянным местом обитания. Это возбудители ботулизма, актиномицеты, грибы, вызывающие микозы. Вторая группа представлена споровыми бациллами, для которых почва является вторичным резервуаром, где они сохраняются длительное время. Так, споры сибиреязвенных бацилл сохраняются в почве скотомогильников многие десятилетия.

Третья группа — патогенные микробы и вирусы, которые, попадая в почву с выделениями человека и животных, сохраняются там от нескольких часов до нескольких месяцев. Опасность передачи через почву заболеваний, вызванных этими возбудителями, невелика и зависит от интенсивности обсеменения микробами.


По эпидемическим показаниям проводят исследование почвы с. целью выделения патогенных микроорганизмов. Особое значение почва приобретает в военное время, когда увеличивается опасность загрязнения ран землей, содержащей споры возбудителей столбняка и газовой гангрены.

 

11 Микрофлора воздуха

Воздух является средой, содержащей значительное количество микроорганизмов. С воздухом они могут переноситься на значительные расстояния. В отличие от воды и почвы, где микробы могут жить и размножаться, в воздухе они только сохраняются некоторое время, а затем гибнут под влиянием ряда неблагоприятных факторов: высыхания, действия солнечной радиации, смены температуры, отсутствия питательных веществ и др. Наиболее устойчивые микроорганизмы могут долго сохраняться в воздухе и обнаруживаются там с большим постоянством. К такой постоянной микрофлоре воздуха относятся споры грибов и бактерий, сардины и другие пигментообразующие кокки.


Количество микроорганизмов в воздухе колеблется в значительных пределах и зависит от метеорологических условий, расстояния от поверхности земли, от близости населенных пунктов и т. д. Наибольшее количество микробов содержит воздух промышленных городов, наименьшее— воздух лесов, гор. В воздухе закрытых помещений микробов значительно больше, особенно при скоплении людей. В открытом воздухе количество микроорганизмов зимой меньше, чем летом, а в воздухе закрытых помещений соотношение обратное.


Патогенные микроорганизмы попадают в воздух от людей — больных или бактерионосителей, а также от животных, выделяясь главным образом через дыхательные пути. Патогенные микробы могут попасть в воздух с пылью от загрязненных предметов (одежда, одеяла и др.) либо из инфицированной почвы. Споры многих фитопатогенных грибов рассеиваются с пораженных растений и разносятся ветром.


При поражениях полости рта или дыхательных путей в окружающий воздух выделяются патогенные микробы: стафилококки и стрептококки, возбудители дифтерии, коклюша, туберкулеза, различные вирусы, например кори, гриппа. Вдыхая воздух, содержащий эти микробы, человек может заболеть. Этот путь передачи возбудителей инфекционных заболеваний называется воздушно- капельным. Существует и воздушно-пылевой путь передачи патогенных микробов при попадании их в воздух с пылью.


Различают три фазы бактериального аэрозоля, в котором микробы могут находиться в воздухе. Капельный аэрозоль состоит из мелких жидких частичек, взвешенных в воздухе и содержащих большое количество микроорганизмов. Это могут быть капельки слюны или мокроты, которые выделяются при разговоре, кашле, чиханье. Например, при чихании в воздух выбрасывается от 4000 до 40 000 капель диаметром 20—100 мкм. При величине капель до 10 мкм они длительно находятся в воздухе. Многие патогенные микробы малоустойчивы во внешней среде, и заражение человека возможно лишь в непосредственной близости от больного. Такой воздушно-капельный путь передачи характерен для кори, гриппа, коклюша, менингита.


Капельно-ядерный и пылевой аэрозоли состоят из подсохших частичек слюны и мокроты или частиц пыли, взвешенных в воздухе. Находящиеся в ядрышках микробы защищены белковой оболочкой подсохшей мокроты и длительное время могут быть жизнеспособными. С частичками пыли в воздухе могут находиться, например, споры сибиреязвенных бацилл. В ядерном аэрозоле коринебактерии дифтерии могут оставаться жизнеспособными в течение суток, гемолитический стрептококк — до 2 сут, микобактерии туберкулеза — до 18 дней.


Как правило, благоприятные условия для воздушно-капельного распространения инфекции создаются в закрытых помещениях, где концентрация патогенных микробов в воздухе может быть значительной. Возможность аэрогенного инфицирования на открытом воздухе возникает редко. В борьбе с воздушно-капельными инфекциями большая роль принадлежит очистке воздуха путем вентиляции и дезинфекции его. Для уменьшения распространения бактериальных аэрозолей применяют различные маски: ватно-марлевые, марлевые, из ткани Петрянова. При возникновении эпидемий гриппа маски использует медицинский персонал в больницах, аптеках. Маски рекомендуется носить больным гриппом и членам их семей. Во избежание распространения капельных инфекций при поликлинических осмотрах детей используют боксы. Больных с открытыми формами туберкулеза необходимо госпитализировать или обеспечить изолированным жилищем.

 

12 свойства химиотерапевтических препаратов

Химиотерапевтические препараты – это лекарственные вещества, используемые для подавления жизнедеятельности и уничтожения микроорганизмов в тканях и средах больного, обладающие избирательным, этиотропным (действующим на причину) действием.

По направленности действия химиотерапевтические препараты делят на:

1) противопротозойные;

2) противогрибковые;

3) противовирусные;

4) антибактериальные.

По химическому строению выделяют несколько групп химиотерапевтических препаратов:

1) сульфаниламидные препараты (сульфаниламиды) – производные сульфаниловой кислоты. Они нарушают процесс получения микробами необходимых для их жизни и развития ростовых факторов – фолиевой кислоты и других веществ. К этой группе относят стрептоцид, норсульфазол, сульфаметизол, сульфометаксазол и др.;

2) производные нитрофурана. Механизм действия состоит в блокировании нескольких ферментных систем микробной клетки. К ним относят фурацилин, фурагин, фуразолидон, нитрофуразон и др.;

3) хинолоны. Нарушают различные этапы синтеза ДНК микробной клетки. К ним относят налидиксовую кислоту, циноксацин, норфлоксацин, ципрофлоксацин;

4) азолы – производные имидазола. Обладают противогрибковой активностью. Ингибируют биосинтез стероидов, что приводит к повреждению наружной клеточной мембраны грибов и повышению ее проницаемости. К ним относят клотримазол, кетоконазол, флуконазол и др.;

5) диаминопиримидины. Нарушают метаболизм микробной клетки. К ним относят триметоприм, пириметамин;

6) антибиотики – это группа соединений природного происхождения или их синтетических аналогов.

химиотерапевтический индекс - показатель широты терапевтического действия химиотерапевтического средства, представляющий собой отношение его минимальной эффективной дозы к максимальной переносимой.

Химиотерапевтический индекс (chemotherapeutic index) [греч. chemeia — химия и therapeia — забота, уход, лечение; лат. index — указатель, показатель] — величина, выражающая отношение максимально переносимой (толерантной) или 50 % дозы химиотерапевтического средства к его минимальной (или 50 %) лечебной или ингибирующей (микробоцидной, микробостатической) дозе, или наоборот. В первом варианте величина Х.и. должна быть больше 3. Постулируется (с рядом оговорок), что чем выше Х.и., тем эффективнее действие препарата. Напр., высокий Х.и. присущ пенициллинам, которые нетоксичны даже при больших концентрациях.

 

13 Антибиотики История

Антибио́ тики — вещества природного или полусинтетического происхождения, подавляющие рост живых клеток, чаще всего прокариотических или простейших.

Антибиотики природного происхождения чаще всего продуцируются актиномицетами, реже — немицелиальными бактериями. Некоторые антибиотики оказывают сильное подавляющее действие на рост и размножение бактерий и при этом относительно мало повреждают или вовсе не повреждают клетки макроорганизма, и поэтому применяются в качестве лекарственных средств. Некоторые антибиотики используются в качестве цитостатических (противоопухолевых) препаратов при лечении онкологических заболеваний.

Антибиотики обычно не воздействуют на вирусы и поэтому бесполезны при лечении заболеваний, вызываемых вирусами (например, грипп, гепатиты A, B, C, ветряная оспа, герпес, краснуха, корь). Однако ряд антибиотиков, в первую очередь тетрациклины, действуют также и на крупные вирусы

В 1928 году Александр Флеминг проводил рядовой эксперимент в ходе исследования болезнетворных бактерий. Вырастив колонии стафилококков, он обнаружил, что некоторые из них заражены обыкновенной плесенью Penicillium, которая растёт на лежалом хлебе, делая его зелёным. Вокруг каждой колонии плесени была область, в которой бактерий не было. Флеминг сделал вывод, что плесень вырабатывает вещество, убивающее бактерии, которое он назвал «пенициллин». Это и был первый современный антибиотик, о котором Флеминг доложил 13 сентября 1929 года на заседании Медицинского исследовательского клуба при Лондонском университете. Однако даже после опубликования статьи сообщение не вызвало у медиков энтузиазма. Дело в том, что пенициллин оказался очень нестойким веществом, он разрушался даже при кратковременном хранении.

Только в 1938 году двум учёным из Оксфордского университета, Говарду Флори и Эрнсту Чейну удалось выделить пенициллин в чистом виде. В связи с большими потребностями в медикаментах во время Второй мировой войны массовое производство этого лекарства началось уже в 1943 году. В 1945 году Флемингу, Флори и Чейну за их работу была присуждена Нобелевская премия.

14 Классификация антибиотиков по происхождению.

В зависимости от источника получения различают 6 групп антибиотиков:

1. Антибиотики, полученные из грибов, например рода Penicillium(пенициллин), родаCephalosporium(цефалоспорины).

2. Антибиотики, полученные из актиномицетов; группа включает около 80% всех антибиотиков. Среди актиномицетов основное значение имеют представители рода Streptomyces, являющиеся продуцентами стрептомицина, эритромицина, левомицетина.

3. Антибиотики, продуцентами которых являются собственно бактерии. Чаще всего с этой целью используют представителей рода BacillusиPseudomonas. Примерами антибиотиков данной являются полимиксины, бацитрацины, грамицидин.

4. Антибиотики животного происхождения; из рыбьего жира получают эктерицид, из молок рыб – экмолин, из эритроцитов – эритрин.

5. Антибиотики растительного происхождения. К ним можно отнести фитонциды, которые выделяют лук, чеснок, сосна, ель, сирень, другие растения. В чистом виде они не получены, так как являются чрезвычайно нестойкими соединениями. Антимикробным действием обладают многие растения, например, ромашка, шалфей, календула.

1 – 5 группы – природные антибиотики.

6. Синтетические и полусинтетические антибиотики.

15 Классификация антибиотиков по механизму действия на микробную клетку.

1. Ингибиторы синтеза компонентов клеточной стенки.

1. Ингибиторы сборки и пространственного расположения молекул пептидогликана.

Пенициллины и цефалоспорины связывают и инактивируют транспептидазы (пенициллинсвязывающие белки), препятствуя нормальной сборке молекул пептидогликанов.

2. Ингибиторы синтеза пептидогликанов.

Ванкомицин, циклосерин и бацитрацин ингибируют активность промежуточных предшественников синтеза клеточной стенки.

1. Препараты, нарушающие функции цитоплазматической мембраны микроорганизмов.

Полимиксины – бактерицидное действие связано с нарушением осмотической резистентности цитоплазматической мембраны.

Полиеновые антибиотики (нистатин, леворин, амфотерицинb) используются как противогрибковые препараты; механизм действия – связывание эргостерола цитоплазматической мембраны с последующим выходом низкомолекулярных соединений из клетки.

Грамицидины вызывают нарушение целостности цитоплазматической мембраны.

1. Ингибиторы синтеза белка.

Самая многочисленная и разнообразная по химической структуре группа антибиотиков. Основной механизм действия большинства препаратов – нарушение функциональных свойств рибосом.

Аминогликозиды реагируют с 30S-субъединицей рибосомы, образуя необратимый комплекс с одним из рибосомальных белков. Тем самым блокируются функции рибосом в целом.

Известны 3 пути нарушения синтеза белка

· Блокируется формирование пептидных связей, что опосредует основной путь реализации бактерицидного действия.

· Блокируется взаимодействие транспортной РНК с комплексом матричная РНК–рибосома.

· Появляются дефектные полипептиды вследствие искажения кода матричной РНК и нарушения считывания генетической информации.

Тетрациклины оказывают бактериостатическое действие. Механизм действия: взаимодействие с бактериальными 30Sрибосомами с последующим блокированием присоединения транспортной РНК к комплексу рибосома – матричная РНК и нарушением встраивания новых аминокислот в полипептидную цепь.

В настоящее время природные тетрациклины (хлортетрациклин, окситетрациклин) практически не применяются, их вытеснили полусинтетические препараты (доксициклин).

Левомицетин – единственный природный антибиотик, молекула которого содержит нитробензен, опосредующий его токсичность для клеток бактерий и млекопитающих. Действие бактериостатическое. Механизм действия: взаимодействие с 50Sсубъединицей рибосомы с последующим ингибированием активности пептидилтрансферазы, ответственной за образование пептидных связей.

Макролиды содержат макроциклическое лактонное кольцо с присоединенными комбинациями необычных сахаров (аминосахара, безазотистые сахара). Природные макролиды: эритромицин, олеандомицин, в настоящее время становятся популярными полусинтетические макролиды – рокситромицин и другие.

Действие бактериостатическое, механизм действия – подавление пептидилтрансферазной активности.

1. Ингибиторы транскрипции и синтеза нуклеиновых кислот, включают вещества, подавляющие синтез ДНК (репликацию) и РНК (транскрипцию).

Хинолоны – антибактериальные препараты широкого спектра действия; механизм активности опосредован ингибированием топоизомеразы (ДНК-гиразы), что препятствует спирализации молекулы ДНК.

Производные нитроимидазола (метронидазол) проявляют селективный бактерицидный эффект в отношении некоторых анаэробов и простейших. Механизм действия – восстановление нитрогрупп препарата в нитрозогидроксиламиногруппы путем переноса электронов, осуществляемое белком, аналогичным ферредоксину теплокровных. Подобное превращение препятствует выходу метронидазола из клетки и приводит к накоплению его в концентрациях, в 10-100 раз превышающих таковые во внеклеточной среде. Депонированный метаболит вызывает множественные нарушения структуры ДНК.

Ингибиторы синтеза РНК (транскрипции) – рифамицины. Молекула рифамицина содержит бициклическую структуру с длинным алифатическим мостиком и нитрифицированной боковой цепью. Действие бактерицидное, опосредовано ингибированием ДНК-зависимой РНК-полимеразе.

1. Ингибиторы синтеза нуклеотидов составляют большую группу антимикробных агентов; механизм действия связан с ингибированием синтеза фолиевой кислоты за счет нарушения метаболизма пуринов и пиримидинов. Бактериостатическое действие.

Сульфаниламиды – механизм действия – подавление синтеза тимидина и всех пуринов. Препараты – структурные аналоги парааминобензойной кислоты, связывают дигидроптероатсинтетазу, препятствуя образованию интермедиаторов синтеза фолиевой кислоты, служащей коферментом в переносе атома углерода между молекулами.

Диаминопиримидины. Химическая структура препаратов аналогична птеридиновой части фермента (редуктазы), катализирующего восстановление дигидрофолиевой кислоты в тетрагидрофолиевую. Механизм активности направлен на ингибирование синтеза тимидина и пуринов.

Применяется триметоприм, который является структурным аналогом дигидрофолиевой кислоты и связывает дигидрофолатредуктазу. Комбинация триметоприм – сульфаметоксазол (бисептол) оказывает бактерицидное действие, хотя оба компонента – бактериостатики.

 

16 классификация антибиотиков по спектру действия

1. Антибиотики узкого спектра:

А) действующие преимущественно на грамположительную флору: бензилпенициллины, полусинтетические пенициллиназоустойчивые пенициллины, 1-я генерация цефалоспоринов, макролиды, линкомицин, ристомицин, фузидин, ванкомицин.

Б) действующие преимущественно на грамотрицательую флору: полимексины, уреидопенииллины, монобактамы.

2. Антибиотики широкого спектра:

- тетрациклины, аминогликозиды, левомицитин, аминопенициллины, цефалоспорины, карбапенемы.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.