Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Необходимость (потребность) элементов.






На разных этапах развития растительного организма питатель­ные вещества потребляются им с различной интенсивностью; неоди­накова также скорость поступления различных соединений у разных видов растений. Не совпадают также периоды наибольшей потреб­ности в отдельных элементах у одного и того же растения.

Например, для сахарной свеклы, как и для других корнеплодов, на первом году жизни характерно растянутое поступление фосфора и калия. Более сжаты сроки поступления в свеклу азота и в особенности магния. Поглощение магния заканчивается у свеклы за 30—40 дней до окончания вегетационного периода. В дальнейшем имеет место лишь повторное использование уже воспринятого магния, причем значительная часть запасов этого элемента теряется вместе с отми­рающими листьями.

Из злаков наиболее растянут период поглощения питательных веществ у озимых хлебов. У озимых период поглощения азота и калия длится около 7 месяцев. У озимой пшеницы и ржи содержа­ние азота и калия достигает максимума после окончания цвете­ния — в начале созревания зерна, а поступление фосфорной кисло­ты продолжается вплоть до достижения семенами полной спелости.

У яровых хлебов активное поглощение питательных веществ крайне сжато во времени, например у овса оно продолжается всего 40—55 дней. У зерновых бобовых (горох, фасоль) этот период при­мерно вдвое более продолжителен, причем в особенности растянуто поступление фосфора. Непосредственной причиной этого является характерный зерновым бобовым длитель­ный период цветения и плодообразования.

Элементы, соединения которых подвижны, весьма активно пог­лощаются растениями на ранних этапах их развития. Эти элемен­ты поступают в растение со скоростью, превышающей накопление тем же организмом сухих веществ. Поглощение элементов, дающих малоподвижные соединения, идет более или ме­нее пропорционально синтезу сухих веществ, а в ряде случаев — даже отстает от последнего.

Потребление питательных ве­ществ растениями в особенности усиливается в период цветения и последующего образования семян. Так, у льна за период цветения длительностью 10—12 дней общее количество золы в растении удва­ивается, содержание же некоторых элементов (фосфора, калия, азота) за этот срок возрастает в три и даже четыре раза.

Земляника за период плодоношения, которое у нее продолжается около трех недель, поглощает почти половину от общего количества потребляемого этим растением фосфора и калия.

Наряду с этим установлена различная степень чувствительности растений на разных этапах их развития к высоким концентрациям солей в почве, которые создаются при одновременном внесении в почву больших доз минеральных удобрений.

Отрицательное действие высоких концентраций питательных солей проявляется уже на самых первых этапах жизни растений, в момент прорастания семян. Повышенное содержание в среде ми­неральных элементов снижает всхожесть, а также энергию прора­стания семян. Оно угнетает развитие корневой системы, что, есте­ственно, сказывается отрицательно на всем дальнейшем развитии растений.

Высокая концентрация удобрений на ранних этапах развития подавляет синтетические процессы в тканях растений. В частности, в этих условиях наблюдается ослабление процессов синтеза белков.

Чувствительность к высоким концентрациям солей на ранних этапах развития различна у разных видов. Неодинакова также степень устойчивости одного и того же рас­тения по отношению к различным элементам.

Механизм поглощения ионов, роль процессов диффузии и адсорбции, их характеристика, понятие свободного пространства; транспорт ионов через плазматическую мембрану, роль вакуоли, пиноцитоз.

Все неорганические питательные вещества поглощаются в форме ионов, содержащихся в водных растворах. Поглощение ионов клеткой начинается с их поступления в апопласт и взаимодействия с клеточной стенкой. Ионы могут частично локализоваться в межмицеллярных и межфибриллярных промежутках клеточной стенки, частично связываться и фиксироваться в клеточной стенке электрическими зарядами. Поступившие в апопласт ионы легко вымываются. Объем клетки, доступный для свободной диффузии ионов, получил название свободного пространства. Свободное пространство включает межклетники, клеточные стенки и промежутки, которые могут возникать между клеточной стенкой и плазмалеммой. Иногда его называют кажущимся свободным пространством (КСП). Этот термин означает, что его рассчитываемый объем зависит от объкта и природы растворенного вещества. Так, для одновалентных ионов объем КСП будет больше, чем для двухвалентных. Кажущееся свободное пространство занимает в растительных тканях 5–10 % объема. Поглощение и выделение веществ в КСП – физико-химический пассивный процесс, независимый от температуры (в интервале +15 – +35о С) и ингибиторов энергетического обмена. Клеточная стенка обладает свойствами ионообменника, так как в ней адсорбированы ионы Н+и НCO-3, обменивающиеся в эквивалентных количествах на ионы внешнего раствора. Из-за преобладания отрицательных фиксированных зарядов в клеточной стенке происходит первичное концентрирование катионов (особенно двух- и трехвалентных). Второй этап поступления ионов – транспорт через плазмалемму. Транспорт ионов через мембрану может быть пассивным и активным. Пассивное поглощение не требует затрат энергии и осуществляется путем диффузии по градиенту концентрации вещества, для которого плазмалемма проницаема. Пассивное передвижение ионов определяется не только химическим потенциалом µ, как это имеет место при диффузии незаряженных частиц, но и электрическим потенциалом ε. Оба потенциала объединяют в виде электрохимического потенциала  µ:

 µ = µ + nFε,

где µ – химический, ε – электрический,  µ – электрохимический потенциалы;

n – валентность иона; F – константа Фарадея.

Любая разность электрических потенциалов, которая возникает на мембранах, вызывает соответствующее перемещение ионов.

Пассивный транспорт может идти с участием переносчиков с большей скоростью, чем обычная диффузия, и этот процесс носит название облегченной диффузии. Известны высокоспецифические транслоказы – белковые молекулы, переносящие адениловые нуклеотиды через внутреннюю мембрану митохондрий: Nа+/Са2+-обменник – белок, входящий в состав плазматических мембран многих клеток; низкомолекулярный пептид бактериального происхождения валиномицин – специфический переносчик для ионов К+. Процесс

облегченной диффузии имеет ряд особенностей: 1) описывается уравнением Михаэлиса-Ментен и имеет определенные Vmax и Km; 2) селективен (обладает специфичностью к определенному иону); 3) подавляется специфическими

ингибиторами.

Диффузионным путем идет также и транспорт ионов через селективные ионные каналы – интегральные белковые комплексы мембран, образующие гидрофильную пору. Основной составляющей движущей силы этого транспорта является градиент электрохимического потенциала иона. Активность каналов модулируется мембранным потенциалом, рН, концентрацией

ионов и др. Активный транспорт веществ осуществляется против концентрационного градиента и должен быть сопряжен с энергодающим процессом. Основным источником энергии для активного транспорта является АТФ. Поэтому, как правило, активный транспорт ионов осуществляется с помощью транспортных АТФаз.

В сопрягающих мембранах имеются протонные насосы, работающие как Н+-АТФ-азы. В результате их функционирования на мембране возникают разность концентраций протонов (Δ рН) и разность электрических потенциалов, в совокупности образующие протонный электрохимический потенциал, обозначаемый Δ μ Н+. За счет работы Н+-АТФ-азы создается кислая среда в некоторых органеллах клетки (например лизосомах). В митохондриальной мембране Н+-АТФ-аза работает в обратном направлении, используя

Δ μ Н+, создаваемый в дыхательной цепи, для образования АТФ. Наконец, в клетках широко представлен вторично-активный транспорт, в процессе которого градиент одного вещества используется для транспорта другого. С помощью вторично-активного транспорта клетки аккумулируют сахара, аминокислоты и выводят некоторые продукты метаболизма, используя градиент Н+.

Пройдя через плазмалемму, ионы поступают в цитоплазму, где включаются в метаболизм клетки. Внутриклеточный транспорт ионов осуществляется благодаря движению цитоплазмы и по каналам эндоплазматического ретикулума. Ионы попадают в вакуоль, если цитоплазма и органеллы уже насыщены ими, или для пополнения пула осмотически активных частиц. Для того, чтобы попасть в вакуоль, ионы должны преодолеть еще один барьер – тонопласт. Транспорт ионов через тонопласт совершается также с помощью

переносчиков и требует затраты энергии. Переносчики, расположенные в тонопласте, имеют меньшее сродство к ионам и действуют при более высоких концентрациях ионов по сравнению с переносчиками плазмалеммы. В тонопласте была идентифицирована особая Н+-АТФаза. Она не тормозится диэтилстильбэстролом – ингибитором Н+-АТФазы плазмалеммы.

Взаимосвязь процессов поглощения веществ корнем с другими функциями растения (дыханием, фотосинтезом, водообменом, ростом, биосинтезом и др.); поглощение ионов клетками листа, отток ионов из листьев, перераспределение и реутилизация веществ в растении.

Известные исследователи (И. Кноп, Ю.Сакс, Д.Н.Прянишников и др.) установили, что потребность растения в отдельных зольных элементах изменяется на разных фазах его развития. Более высокие потребности связаны с активным метаболизмом, ростом и новообразованиями. При дефиците многих минеральных элементов симптомы голодания проявляются, в первую очередь, на старых органах. Это обусловлено тем, что регуляторные системы растения мобилизуют необходимые минеральные элементы и они транспортируются в молодые, активно растущие ткани. Очень подвижны азот, фосфор, калий. Плохо или совсем не реутилизируются бор и кальций. Для нормальной жизнедеятельности растений должно соблюдаться определенное соотношение различных ионов в окружающей среде. Чистые растворы одного какого-либо катиона оказываются ядовитыми. Так, при помещении проростков пшеницы на чистые растворы KCL или CaCL2 на корнях сначала появлялись вздутия, а затем корни отмирали. Смешанные растворы этих солей не обладали ядовитым действием. Смягчающее влияние одного катиона на действие другого называют антагонизмом ионов. Антагонизм ионов проявляется как между разными ионами одной валентности, например между ионами натрия и калия, так и между ионами разной валентности, например ионами калия и кальция. Одной из причин антагонизма ионов является их влияние на гидратацию белков цитоплазмы. Двухвалентные катионы (кальций, магний) дегидратируют коллоиды сильнее, чем одновалентные (натрий, калий). Следующей причиной антагонизма ионов является их кокуренция за активные центры ферментов. Так, активность некоторых ферментов дыхания ингибируется ионами натрия, но их действие снимается добавлением ионов калия. Кроме того, ионы могут конкурировать за связывание с переносчиками в процессе поглощения. Действие одного иона может и усиливать влияние другого. Это явление называется синергизмом. Так, под влиянием фосфора повышается положительное действие молибдена. Изучение количественных соотношений необходимых элементов позволило создать сбалансированные питательные смеси, растворы минеральных солей для выращивания растений. Хорошо известны смеси Кнопа, Пря нишникова, Гельригеля и др.

Исследования ученых школы Д. Н. Прянишникова показали, что каждый вид растения предъявляет специфические требования к количественным комбинациям отдельных зольных элементов. Было также установлено, что потребность растения в отдельных зольных элементах изменяется на разных фазах его развития. Таким образом, наилучшим питательным раствором для растения должен считаться раствор не постоянного, а переменного состава, изменяемый соответственно изменению потребностей растения на разных стадиях его развития. Это положение имеет громадное практическое значение, являясь основой нового метода искусственного поднятия урожайности. Работы Д. А. Сабинина позволили выяснить механизмы поступления воды и минеральных веществ в клетки корней растений, антагонизма и синергизма во взаимодействии ионов.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.