Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Электронные усилители.




Усилителем называют устройство, предназначенное для повышения мощности входного сигнала путем преобразования энергии источника питания постоянного тока в энергию переменного сигнала. В линейном усилителе входной сигнал усиливается без искажения его формы.

Основным количественным параметром усилителя является коэффициент усиления. В зависимости от функционального назначения усилителя различают коэффициенты усиления:

По напряжению Ku=Uвых/Uвх

По току Ki=Iвых/Iвх

По мощности Kp=Pвых/Pвх ,

где Uвых Uвх Iвых Iвх Pвых Pвх - выходные и входные величины напряжения, тока и мощности соответственно.

Выходная мощность Pвых=U2вых/Rн ,

где Rн - сопротивление нагрузки

КПД η =Pвых/Pобщ ,

где Pобщ -мощность потребляемая всеми источниками питания.

Одним из важнейших показателей, характеризующих свойства усилителя, является его комплексный коэффициент усиления

К - модуль коэффициента усиления усилителя

φ - разность начальных фаз сигнала проходящего через усилитель.

На рис 2.16. представлены основные характеристики усилителя.

Зависимость модуля коэффициента усиления усилителя от частоты носит название амплитудно-частотной характеристики (рис 2.16. а). Как видно из

а) б)

 

Рис. 2.16. Основные характеристики

в) усилителя

 

рисунка, при изменении частоты усиливаемых колебаний значение модуля коэффициента усиления не остается постоянным. Диапазон частот, в пределах которого изменения коэффициента усиления не превышают заданного значения, называется полосой пропускания или рабочим диапазоном частот усилителя.

Зависимость угла сдвига фаз от частоты называется фазо-частотной характеристикой рис. (2.16. б). Она позволяет оценивать фазовые искажения, возникающие в усилителях из-за присутствия реактивных элементов в схемах усиления.

Амплитудная характеристика (рис. 2.16. в) – это зависимость амплитуды выходного напряжения от амплитуды входного напряжения. Точка Uш соответствует напряжению шумов, измеряемому при Uвх =0, точка а – минимальному входному напряжению при котором на входе усилителя можно различить сигнал на фоне шумов. Участок а-б – рабочий участок, на котором сохраняется пропорциональность между входным и выходным напряжениями усилителя. После точки б пропорциональность между выходным и входным напряжениями нарушается из-за нелинейности, вольтамперных характеристик транзистора. Данное обстоятельство приводит к искажению формы выходного сигнала, эти искажения называются нелинейными. Оцениваются нелинейные искажения по коэффициенту гармоник (коэффициенту нелинейных искажений).

Динамический диапазон усилителя характеризует диапазон напряжений сигнала, которые данный усилитель может усилить без внесения помех и ис­кажений сверх нормы и равен отношению максимального входного напряже­ния к минимальному:



Динамический диапазон обычно выражается в децибелах.

Переходная характеристика представляет собой графически выраженную временную зависимость мгновенного значения выходного напряжения при воздействии на вход усилителя единичного скачка напряжения. Эта характери­стика используется при оценке линейных искажений, вносимых усилителем при передаче импульсных сигналов. Искажения импульсных сигналов называются также переходными искажениями, а аналитическая запись переходной характеристики - переходной функцией.

Общие принципы работы электронных усилителей. Усили­тельные свойства транзистора могут быть реализованы при включении в его коллекторную или эмиттерную цепь внешних сопротивлений, с которых сни­маются колебания усиливаемого сигнала. В этом случае статические характе­ристики не отражают зависимостей между мгновенными значениями напряже­ний и токов в цепях усилительного элемента. Эту функцию выполняют динамические характеристики усилительного каскада, широко используемые при графоаналитическом расчете. Для практических целей используют выходные, входные, проходные и сквозные динамические характеристики.

 

 

Рис. 2.17. Усилительный каскад на транзисторе по схеме с ОЭ

 

Рассмотрим работу простейшего усилительного каскада на транзисторе (рис. 2.17). Во входную цепь транзистора включены источник входного сигнала с действующим значением ЭДС ЕН источник смещения Eсм. Нагрузкой тран­зистора для постоянного коллекторного тока является сопротивление RК. Бу­дем считать, что сопротивление конденсатора Ср, через который усиленное на­пряжение переменного сигнала передается к внешней нагрузке, а также внут­реннее сопротивление источника питания Ек переменной составляющей вы­ходного коллекторного тока незначительны по сравнению с последовательно , включенными сними сопротивлениями RH и RК. Это справедливо для большей части рабочего диапазона частот усилителя Поэтому сопротивление нагрузки коллекторной цепи переменному току , где RН - сопро­тивление внешней нагрузки каскада. Выходная динамическая характеристика отображает графически зависимость выходного тока усилительного кас­када от выходного напряжения при наличии в выходной цепи сопротивлениянагрузки.



 

б) а)

 

Рис. 2.18. Характеристики усилителей

 

При отсутствии входного сигнала через транзистор протекает постоянный ток и для любого момента времени для выходной цепи можно записать:

Данное выражение является уравнением прямой линии в системе ко­ординат статических выходных характеристик Iвых=f(Uвых), ее строят по двум точкам: первая точка - UК = 0, IК = EК/RК; вторая точка -IK = 0, UK = ЕK. Прове­денную между этими точками линию называют нагрузочной линией тока или нагрузочной прямой постоянного тока (рис. 2.18,а линия KL).

Точка пересечения нагрузочной прямой со статической характеристикой при заданном входном напряжении Uвх.0, определяемом источником смещения Есм , называется рабочей точкой "А". Нагрузочная прямая каскада при пере­менном токе отличается от нагрузочной прямой постоянного тока, т.к. по переменному току нагрузочное сопротивление усилителя равно не RК, a Rн.экв (прямая MN на рис. 2.18,а). Обе прямые пересекаются в рабочей точке "А".

Линию нагрузки постоянному току используют для определения коор­динат точки покоя, зная которые, можно рассчитать элементы смещения и ста­билизации усилительного каскада, а также при полном расчете каскадов пред­варительного усиления, работающих в режиме малого сигнала линией нагрузки переменного тока пользуются при расчете усилителей мощности, т.е. схем, работающих при больших амплитудах сигналов.

Проходная динамическая характеристика - это зависимость вида Iвых = f(Uвх). Построить ее можно переносом точек нагрузочной прямой переменного тока с выходных координат в проходные (рис. 2.18,б). Входная динамическая характеристика усилительного каскада - это зависимость Iвх = f(Uвх). Поскольку входные статические характеристики для раз­ных, значений Uвых отличаются очень незначительно, обычно в качестве дина­мической входной характеристики используют статическую, снятую при вы­ходном напряжении 5 В (приводится в справочниках).

Степень нелинейных искажений усиливаемых сигналов и КПД усили­тельного каскада определяются выбором его режима работы (класса). В зави­симости от положения рабочей точки различают три основных режима работы усилительных каскадов: А, В и С. Положение рабочей точки, в свою очередь, определяется величиной напряжения смешения, подаваемого на вход управ­ляющего элемента.

Подача смещения на вход управляющего элемента. При отсут­ствии входного сигнала необходимо правильно выбрать начальное положение рабочей точки усилительного каскада - точку покоя. Положение начальной ра­бочей точки определяется полярностью и значением напряжения смешения на входе управляющего элемента. Значения напряжения смещения на входе обычно лежат в пределах от 0,1 до 1 В. Существует ряд схем, которые позво­ляют осуществлять подачу напряжения смещения во входную цепь от источ­ника питания выходной цепи. Такие схемы называют схемами смещения фиксированным током или фиксированным напряжением. Рассмотрим их для

 

 

а) б)

 

Рис. 2.19. Схемы подачи смещения на вход биполярного транзистора

 

случая, когда управляющим элементом является биполярный транзистор, включенный по схеме с общим эмиттером.

Подача смешения фиксированным током. В этой схеме (рис. 2,19,а) база соединена с минусом источника Ек, через резистор Rб. В режиме покоя напряжение смешения на базе

где ток Iоб определяют по входной статической характеристике тран­зистора, исходя из требуемого положения начальной рабочей точки. Сопротивление базового резистора определяется по формуле:

Напряжение Uоб << ЕK поэтому Rб = Eк/Iоб. Отсюда следует, что при уста­новленных значениях Ек и Rб ток базы Iоб=Eк/Rб останется тем же при замене транзистора или при изменении температуры и др. Значения Rб обычно со­ставляют десятки и сотни килоом.

Важнейшей характеристикой усилительных устройств является коэффи­циент усиления по напряжению, который для рассматриваемой схемы опреде­ляется формулой

Данное выражение справедливо для ненагруженного усилительного кас­када (Rн >> Rк). Входное сопротивление каскада вычисляется выражением

Выходное сопротивление находится по формуле

Подача смешения фиксированным напряжением. Напряжение смещения создастся делителем напряжения с резисторами R1 R2 (рис. 2.19,б), через кото­рые проходят токи делителя IR1 и IR2. Сопротивления делителя определяются по формулам:

При расчете схемы сопротивления делителя выбираются таким образом, чтобы токи, проходящие через них, были в 3-5 раз больше тока Iоб. В этом слу­чае изменение тока, базы Iоб не вызывает ощутимого изменения напряжения смещения, практически оно остается постоянным.

Температурная стабилизация режимов работы. Основные свойства усилительного каскада (КПД, нелинейные искажения, мощность вы­ходного сигнала и т.д.) определяются положением начальной рабочей точки. Поэтому при изменении температуры, замене управляющего элемента и т.д. положение начальной рабочей точки не должно изменяться сверх допустимых значений. Вместе с тем, параметры транзисторов (например, коэффициент усиления и обратный ток коллекторного перехода) существенно зависят от температуры.

Эмиттерная стабилизация (рис.2.20,а). Стабилизация осуществляется вве­дением в схему последовательной отрицательной ОС по постоянному току. Напряжение обратной связи снимается с резистора R3, который включен в цепь эмиттера. Напряжение смешения, приложенное к эмиттерному переходу,

С изменением температуры изменится ток покоя коллектора, а, следовательно, и ток покоя эмиттера (например, увеличится). Начальная рабочая точка при этом, должна изменить свое положение, но этого не происходит, т.к. напряжение смещения Uоб уменьшится, а вместе с этим уменьшатся и токи транзистора. Начальная рабочая точка остается на прежнем месте.

 

б) в)

 

Рис. 2.20. Схемы температурной

а) стабилизации усилительного каскада

 

Для исключения влияния отрицательной ОС попеременному току на ко­эффициент усиления параллельно резистору Rб включен конденсатор Сэ. Что­бы переменная составляющая эмиттерного тока на всех частотах усиливаемого сигнала не проходила через резистор Rэ емкость конденсатора Сэ должна быть большой. При этом емкостное сопротивление l/(2πfCэ)<<Rэ.

Коллекторная стабилизация (рис. 2.20,б). Стабилизация осуществляется введением отрицательной ОС по напряжению. Напряжение подается через ре­зистор Rб, который включается между коллектором и базой. При этом напряжение на коллекторе Uок = Uоб + RбIоб. Поскольку напряжение Uоб мало по сравнению с напряжением на резисторе Rб, им можно пренебречь. Тогда

,

откуда следует, что, например, при увеличении температуры и, следо­вательно, тока Iок напряжение на резисторе Rб равное RбIоб , уменьшается, т.е. уменьшается ток Iоб, а это вызывает уменьшение тока Iок. Чтобы исключить от­рицательную ОС по переменной составляющей коллекторного напряжения (что вызвало бы снижение коэффициента усиления усилителя), в цепь ОС вво­дят конденсатор. При этом резистор Rб заменяют двумя с примерно равными сопротивлениями (рис. 2.20,в) и конденсатор включают между ними и зазем­ленной точкой, в результате чего переменная составляющая напряжения ОС не попадает на базу транзистора. Коллекторная стабилизация проще и экономич­ней эмиттерной, но уступает ей по диапазону стабилизируемых температур.

Усилители постоянного тока. Усилителями постоянного тока (УПТ) называют такие приборы, которые способны усиливать не только пере­менные, но и постоянные составляющие напряжения и тока. Низшая рабочая частота таких усилителей нулевая, а верхняя может быть любой, вплоть до очень высокой.

Частотная характеристика УПТ равномерна. В таких усилителях используется только гальваническая связь между каскадами. Отсутствие реактивных элементов принудит к тому, что через усилитель могут одновременно прохо­дить полезный сигнал и сигнал помехи, обусловленный различного рода элек­трическими процессами чаще всего нестационарного характера. Такими про­цессами могут быть, например, изменение, во времени характеристик, и пара­метров транзисторов из-за изменения условий окружающей среды либо с течением времени, нестабильность напряжения источника питания и др. В резуль­тате этого на выходе усилителя появляются ложные сигналы, не отличающиеся от полезных.

Непостоянство выходного напряжения при неизменном уровне входного сигнала, обусловленное влиянием помех, называется дрейфом нуля усилителя. При построении практических схем УПТ принимают меры для борьбы с дрейфом нуля, а именно, жесткая стабилизация источников питания, использо­вание отрицательных обратных связей, применение балансных (дифференци­альных) и компенсационных схем.

УПТ - наиболее распространенный тип усилительных устройств в вы­числительной технике. Они имеют много разновидностей (дифференциальные, операционные, усилители с преобразованием сигнала и др.)

Дифференциальные усилители (ДУ). Другое название их – параллельно-балансные каскады.

Принцип работы балансной схемы можно пояснить на примере четырехплечевого моста, схема которого представлена на рис. 2.21. Если выполняется условие R1R3=R2R4, т.е. мост сбалансирован, то в нагрузочном секторе Rн ток равен нулю. Баланс не нарушится и в том случае, если будет

 

Рис. 2.21. Схема четырехплечевого моста

 

изменяться напряжение E. На рис.2.22 представлена схема простейшего дифференциального каскада, которая аналогична схеме рис. 2.21, если резисторы R2 и R3 заменить транзисторами T1 и T2 и считать, что R1=Rk1, а R4=Rk2. Сопротивления резисторов Rk1 и Rk2 выбирают равными, а транзисторы T1 и T2 с идентичными характеристиками. В этом случае схема симметрична.

 

 

Рис. 2.22. Схема дифференциального каскада

 

В отсутствие сигнала напряжение равно нулю. Поскольку схема симметрична, всякое одновременное изменение характеристик транзисторов (за счет изменения температуры, или из-за старения) вызовет одинаковое изменение токов вобоих плечах, поэтому разбаланса схемы не произойдет и дрейф выходного напряжения будет практически равен нулю.

Рассмотрим, как изменится состояние схемы при подаче на входы 1 и 2 сигналов, равных по значению и синфазных; равных по значению и противофазных (дифференциальных).

На вход ДУ поданы синфазные сигналы.Потенциалы базтранзисторов
изменятся на одну величину. Ток через резистор Rэ поровну распределится ме­жду плечами ДУ, и потенциалы коллекторов изменятся на одно и то же значе­ние. Напряжение на выходе будет равно нулю. Такимобразом, идеальный ДУ не пропускает на выход синфазный сигнал.

На вход ДУ поданы дифференциальные сигналы.Входное напряжение Uвх12между точками 1 и 2 будет равно разности этих сигналов. Поскольку схе­ма симметрична, половина этого входного напряжения будет приложена к эмиттерному переходу одного транзистора(со знаком плюс), адругая половина - к эмиттерному переходудругого транзистора (со знаком минус), В результате этого приращения токов вплечах схемы будут одинаковы, но с разными знаками. Потенциал коллектора одного транзистора увеличится, а другого умень­шился на одно и то же значение. На выходе ДУ между точками а и б появится выходное напряжение. Таким образом, дифференциальный сигнал, поданный на вход ДУ, вызывает появление усиленного сигнала на выходе.

В идеальных ДУ за счет подавления синфазного сигнала дрейфа, нуля не существует, в реальных ДУ он присутствует, но очень незначителен по сравне­нию с дифференциальным (полезным) сигналом.

Качество ДУ оценивают коэффициентом подавления синфазного сигнала Кпсс = Кдc, где Кд - коэффициент усиления дифференциального сигнала; Кc - коэффициент усиления синфазного сигнала. ДУ считается хорошим, если Кпсс > I04- 105.

Поскольку в основе работы ДУ лежит идеальная симметричность его плеч, а выполнить это практически возможно только при микроэлектронном испол­нении, наиболее широко ДУ используются в интегральных микросхемах.

Операционным усилителем (ОУ) называют усилитель постоянного тока с дифференциальным входным каскадом, с очень высоким и стабильным коэф­фициентом усиления (от 1000 до 100000), широкой полосой пропускания сиг­нала (fв=10-100 МГц), высоким входным сопротивлением (Rвх > 10 кОм); малым выходным сопротивлением (Rвых < 100 Ом), малым дрейфом нуля, вы­соким коэффициентом подавления синфазных сигналов, несимметричным вы­ходом. Таким образом, это высококачественный универсальный усилитель.

Один из входов ОУ называют прямым, т.к сигнал на выходе и сигнал на
этом входе имеют одинаковую полярность. Другой вход называют инверти-рующим, т.к. сигнал на выходе имеет противоположную полярность по отно-шению к сигналу на этом входе. Питание ОУ осуществляется от двухполярного. источника со средней точкой , это дает возможность получить навыходе ОУ двухполярный сигнал. Существуют, различные варианты подачи входного сигнала (на один из входов, между двумя входами, два различных сигнала). Часто сигнал подают на неинвертирующий вход, а через инвертирующий вход ОУ охватывают глубокой обратной связью (ОС). В этом случае можно полу­чить устройства с различными свойствами, которые будут определяться пара­метрами цепи ОС. С помощью такого ОУ можно осуществлять математические операции (умножение, интегрирование, дифференцирование, сравнение и др.). Операционный усилитель является универсальным устройством аналоговых (линейных) интегральных микросхем.

 


mylektsii.ru - Мои Лекции - 2015-2018 год. (0.019 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал