Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Разработка месторождений природного газа






1. Газовые, газоконденсатные, нефтегазоконденсатные и газогидратные залежи.

Площади газоносности газовых залежей в плане могут иметь различную форму: удлиненного овала с отношением продольной и поперечной осей более 10, овала, круга, прямоугольника или фигуры произвольной формы.

Территории промыслов различаются рельефом, грунтом, застройками различного назначения. Газоносный коллектор в общем случае характеризуется изменчивостью литологического состава и геолого-физических параметров по площади и разрезу. Эти причины в сочетании с требованиями экономики обуславливают различные способы размещения эксплуатационный нагнетательных и наблюдательных скважин на структуре и площади газоносности.

При разработке газовых и газоконденсатных месторождений широко применяют следующие системы размещения эксплуатационных скважин по площади газоносности: равномерное по квадратной или треугольной сетке, батарейное; линейное по “цепочке”; в сводовой части залежи; неравномерное.

Равномерная сетка скважин обеспечивает равномерное падение пластового давления. Дебиты скважин в данном случае обусловливаются средним пластовым давлением по залежи в целом. Таким образом, при равномерном размещении скважин темп снижения средневзвешенного по объему порового пространства приведенного давления р/z в удельном объеме дренирования равен темпу снижения приведенного давления в залежи в целом.

Недостаток равномерной системы расположения скважин - увеличение протяженности промысловых коммуникаций и газосборных сетей.

При батарейном размещении скважин образуется местная воронка депрессии, что значительно сокращает период бескомпрессорной эксплуатации месторождения и срок использования естественной энергии пласта для низкотемпературной сепарации газа. С другой стороны, в этом случае сокращается протяженность газосборных сетей и промысловых коммуникаций. Линейное расположение скважин по площади газоносности обусловливается, как правило, геометрией залежи. Оно обладает теми же преимуществами и недостатками, что и батарейное.

На практике газовые и газоконденсатные залежи разрабатываются, как правило, при неравномерном расположении скважин по площади газоносности. При неравномерном размещении скважин на площади газоносности темпы изменения средневзвешенного приведенного давления в удельных объемах дренирования скважин и всей залежи различны. В этом случае возможно образование глубоких депрессионных воронок давления в отдельных объемах залежи.

Преимущество неравномерного размещения скважин на площади газоносности по сравнению с равномерным уменьшение капитальных вложений в строительство скважин, сроков строительства скважин, общей протяженности промысловых дорог, сборных газо-и конденсатопроводов, ингибиторопроводов,. водопроводов, линий связи и электропередач.

Наблюдательные скважины (примерно 10 % эксплуатационных) бурят, как правило, в местах наименьшей геологической изученности залежи, вблизи мест тектонических нарушение в водоносной зоне около начального газоводяного контакта в районах расположения скважин, эксплуатирующих одновременно несколько пластов, в центре кустов при батарейно-кустовом размещении скважин. Они позволяют получать разнообразную информацию о конкретных свойствах пласта; изменении давления; температуры и состава газа; перемещении газоводяного контакта; газо-, водо- и конденсатонасыщенности пласта; направлении и скорости перемещения газа в пласте.

При разработке газоконденсатных залежей с поддержанием пластового давления размещение нагнетательных и эксплуатационных скважин на структуре и площади газоносности зависит от рабочего агента, закачиваемого в пласт для поддержании давления, геометрической формы площади газоносности в плане и коллекторских свойств залежи.

При закачке в пласт газообразного рабочего агента (как правило, сухого газа) нагнетательные скважины размещают в виде батарей в приподнятой, купольной части залежи, эксплуатационные - также в виде батарей, но в пониженной части, на погружении складки. При закачке в пласт жидкого рабочего агента (как правило, воды) нагнетательные скважины размещают в пониженной части залежи, а эксплуатационные - в повышенной, купольной.

При таком размещении скважин на структуре увеличивается коэффициент охвата вытеснением пластового газа рабочим агентом за счет различия вязкостей и плотностей пластового газа и закачиваемого рабочего агента.

Нагнетательные и эксплуатационные скважины при разработке залежей с поддержанием давления размещаются на площади газоносности в виде кольцевых или лилейных цепочек скважин. Обычно расстояние между нагнетательными скважинами принимают 800 - 1200 м, а между добывающими 400 - 800 м.

Разработку газоконденсатных месторождений следует вести при постоянном числе нагнетательных и добывающих скважин.

 

 

2. Особенности поведения углеводородных систем при разработке залежей.

Под разработкой нефтяных и газовых месторождений понимается управление процессом движения жидкостей и газа в пласте к эксплуатационным скважинам при помощи:

- определенной системы размещения установленного числа скважин по площади месторождения;

- порядка и темпа вода их в эксплуатацию;

- поддержания намеченного режима их работы;

- регулирования баланса пластовой энергии.

Рациональная система разработки залежей углеводородов – это такая система, при которой месторождение разбуривается минимальным числом скважин, обеспечивающим при этом заданный темп добычи сырья, высокую конечную нефте– и газоотдачу, решение задач разработки при минимальных капитальных вложениях и себестоимости нефти (газа).

Системы разработки многопластовых месторождений нефти.

1. Система разработки «сверху – вниз» - в первую очередь в разработку вводится продуктивный верхний пласт, а затем ниже залегающие пласты. Применялась раньше широко, при неглубоком бурение. Характеризуется медленным темпом ввода в разработку всех пл. месторождений. Сейчас не применяется.

2. Система «снизу – вверх» - применяется при разработке многопластового месторождения, массовое бурение и освоение начиная с нижнего (опорного, базисного пласта). Он должен быть высокопродуктивным и хорошо разведанным.

 

Вышележащие нефтяные пласты разделяются по значимости. Эта система имеет ряд преимуществ:

1. Вскрываются все нефтеносные горизонты и имеются возможности для их полного изучения путем отбора керна и геофизическими методами.

2. Сокращение общего числа разведочных скважин.

3. Возможность одновременной эксплуатации всех объектов нефтегазодобычи т.е. ускоряются темпы освоения всего месторождения в целом.

Основной задачей разработки нефтяных месторождений является выбор схемы размещения скважин и определение их числа на площади. Она решается комплексно с учетом геологических, технических и экологических факторов.

При разработке нефтяных залежей с неподвижным контуром нефтеносности скважины размещают сплошной сеткой (по квадратам или треугольникам) по всей площади залежи.

При разработке нефтяных залежей с напорными режимами (с перемещающимися контурами нефтеносности) скважины располагаются рядами (батареями), параллельными перемещающимися контурами: при газонапорном режиме параллельно контуру газоносности; при водонапорном режиме параллельно контуру водоносности.

Большое значение при разработке нефтяных залежей имеет темп и порядок ее разбуривания. По темпу ввода скважин в эксплуатацию различают сплошную и замедленную системы разработки нефтяной залежи. При сплошной системе разбуривание производится в сравнительно короткое время (до 1 года), а при замедленной системе – в течение нескольких лет.

По порядку разбуривания залежи различают сгущающуюся и ползущую системы. При сгущающейся системе залежь вначале разбуривается разряженной сеткой скважин (равномерно), далее разбуриваются промежуточные участки плата. При ползущей системе разработки – разбуривание начинается с какой–то части площади (с заданным уплотнением), затем производится дополнительное бурение новых групп (или рядов) скважин в определенном направлении до полного разбуривания всей площади месторождения.

Важным фактором при выборе рациональной системы разработки нефтяных пластов является определение темпа отбора (т.е. суммарная добыча из пласта – суточная, месячная, годовая). При заданном числе скважин их средние дебиты и текущая добыча могут быть самыми различными и зависят от установленного режима эксплуатации скважин.

Одним из важнейших этапов проектирования системы разработки является обоснование необходимости воздействия на пласт путем закачки газа или воды, т.к. обеспечить высокие темпы отбора нефти (даже при большой в. нефтеотдачи пластов) за счет использования только естественной энергии пласта зачастую невозможно.

Таким образом, система разработки конкретной нефтяной залежи может быть самой различной:

- по сетке размещения скважин;

- порядку и темпу разбуривания площади;

- по темпам отбора нефти;

- разработка может вестись с применением методов воздействия на залежь (или без этих методов). Сами методы могут отличаться по виду рабочего агента (газ, вода и т.д.) и по схеме размещения нагнетательных скважин.

Основной особенностью разработки газовых месторождений является неразрывная связь всех элементов в системе пласт - скважины - газосборные сети на промысле - магистральный трубопровод. Отличием газа от нефти: гораздо меньшей вязкостью, плотностью, значительной сжимаемостью. Необходимостью немедленной передачи (доставки) добытого газа к потребителю.

Схему размещения скважин по площади газоносности выбирают в зависимости от формы залежи. Для полосообразной залежи скважины могут размещаться в виде параллельных цепочек вдоль продольной оси залежи или равномерно по всей площади.

При круговой или куполообразной залежи – скважины могут располагаться в виде 1, 2 или 3 кольцевых батарей (или также равномерно по площади). При создании проекта разработки обычно просчитывают по газодинамическим расчетам несколько вариантов размещения скважин. На крупнейших и уникальных по запасам газовых месторождениях Российской Федерации, таких как Медвежье, Ново-Уренгойское, Ямбургское, применяется кустовой метод расположения скважин. При этом в расчетах показателей разработки куст скважин рассматривается, как одна укрупненная скважина.

Темп отбора газа из залежи зависит от ее размеров и геологических условий и может изменяться в пределах 5-10 % и выше от первоначальных запасов. В зависимости от выбранного темпа отбора газа рассчитывают технологический режим работы скважин.

Существенное влияние на выбор числа скважин по площади оказывает диаметр эксплуатационных колонн, чем он больше, тем большим может быть дебит газа скважин и меньше потери давления в стволе. С другой стороны – больше затраты на бурение и оборудование скважины (металл). Поэтому при проектировании разработки газового месторождения определяют диаметр эксплуатационных скважин по нескольким вариантом и выбирают оптимальный – т.е. который сможет обеспечить наилучшие условия добычи газа в процессе всего периода разработки месторождения.

В основу рациональной разработки газового месторождения положен принцип получения заданной добычи при оптимальных технико-экономических показателях и соблюдении условий охраны недр. При проектировании определяют темп разработки месторождения во времени, общий срок разработки, число скважин, их диаметр и схему их размещения по площади.

Проектирование разработки газового месторождения (как и нефтяного) осуществляется комплексно – на базе геологического изучения месторождения, гидрогазодинамических расчетов, технико-экономического сравнения различных вариантов разработки.

 

3. Классификация углеводородных жидкостей и газов по компонентному составу.

Компонент/ свойство Нелетучая «черная»нефть Летучая нефть Газоконденсат «Сухой» газ
С1 46.14 64, 36 86.45 95, 85
С2 2.89 7, 52 4.36 2, 67
С3 2.03 4, 74 2.27 0, 34
С4 1.68 4, 12 1.73 0, 52
С5 1.21 2, 97 0.82 0, 08
С6 1.67 1, 38 0.60 0, 12
С7 + 44.37 14, 91 3.77 0, 42
API 34.3 50.1 60.8 54.7
Газосодер-жание, м3/м3        
Цвет Зеленовато-черный Умеренно-оранжевый Светло-желтый Бесцветный

 

 

4. Режимы разработки газовых и газоконденсатных залежей.

Газовое или газоконденсатное месторождение представляет собой сложную систему, состоящую из большого числа элементов (скважины, установки комплексной подготовки газа, трубопроводы и т.п.), взаимодействующих между собой и с внешней средой на разных уровнях, причем зачастую это взаимодей-
ствие носит неопределенный характер. Эти элементы (объекты) обычно многофункциональны (например, установка комплексной подготовки газа); связи являются переменными, обеспечивающими многорежимное функционирование; управление объектами носит иерархический характер, предусматривающий сочетание централизованного управления или контроля с автономностью. Перечисленные свойства являются отличительными особенностями сложных или больших систем; при этом их проектирование, анализ, исследование и управление возможны лишь на основе системного подхода. Л. Заде сформулировал «принцип целостности», согласно которому большие системы нельзя изучать точно, на основе единой модели.

Зависимости между элементами большой системы являются разнообразными, сложными и не всегда определенными, в результате чего построение единой модели затруднительно или вообще невозможно. В связи с этим при моделировании больших систем используют многоуровневое (иерархическое) описание, причем иерархическая структура системы не остается фиксированной, а определяется конкретными целями и задачами исследования. Так, с одной стороны, скважина и призабойная зона пласта при рассмотрении эксплуатационных задач являются основными элементами, а пласт выполняет функцию внешнего источника. С другой стороны, изучая процесс обводнения залежи, за основной элемент принимают пласт с комплексом свойств (неоднородность, расчлененность и т.д.), а скважины имеют второстепенное значение, выполняя в
первую очередь функции индикаторов процессов.

В газовых и газоконденсатных залежах источниками энергии являются давление, под которым находится газ в пласте, и напор краевых пластовых вод. Соответственно различают газовый и упруговодогазонапорный режимы. Природный режим залежи определяется главным образом геологическими факторами: характеристикой водонапорной системы, к которой принадлежит залежь, и расположением залежи в этой системе относительно области питания; геолого-физической характеристикой залежи — термобарическими условиями, фазовым состоянием УВ, условиями залегания и свойствами пород-коллекторов и другими факторами; степенью гидродинамической связи залежи с водонапорной системой. На режим пласта существенное влияние могут оказывать условия эксплуатации залежей. П

ри использовании для разработки залежи природных видов энергии от режима зависят интенсивность падения пластового давления и, следовательно, энергетический запас залежи на каждом этапе разработки, а также поведение подвижных границ залежи (ГНК, ГВК, ВНК) и соответствующие тенденции изменения ее объема по мере отбора запасов нефти и газа. Все это необходимо учитывать при выборе плотности сети и расположения скважин, установлении их дебита, выборе интервалов перфорации, а также при обосновании рационального комплекса и объема геолого-промысловых исследований для контроля за разработкой.

Природный режим при его использовании обусловливает эффективность разработки залежи — темпы годовой добычи нефти (газа), динамику других важных показателей разработки, возможную степень конечного извлечения запасов нефти (газа) из недр. Продолжительность эксплуатации скважин различными способами, выбор схемы промыслового обустройства месторождения и характеристика технологических установок по подготовке нефти и газа также во многом зависят от режима залежи. Знание природного режима позволяет решить один из центральных вопросов обоснования рациональной системы разработки нефтяных и газоконденсатных залежей: возможно ли применение системы с использованием природных энергетических ресурсов залежи или необходимо искусственное воздействие на залежь?

Режим залежи при ее эксплуатации хорошо характеризуется кривыми, отражающими в целом по залежи поведение пластового давления, динамику годовой добычи нефти (газа) и воды, промыслового газового фактора. Все эти кривые в совокупности с другими данными об изменении фонда скважин, среднего дебита на одну скважину и т.д. представляют собой график разработки залежи.

Газовый режим

При газовом режиме (режиме расширяющегося газа) приток газа к забоям скважин обеспечивается за счет потенциальной энергии давления, под которым находится газ в продуктивном пласте. Ее запас обычно оказывается достаточным для довольно полной выработки залежи (сжимаемость газа на три порядка более сжимаемости воды и породы). Режим формируется при отсутствии влияния законтурной области и может иметь место в условиях как инфильтрационной, так и элизионной водонапорной системы.

При газовом режиме в процессе разработки залежи объем залежи практически не меняется. Некоторое уменьшение пустотного пространства залежи может происходить вследствие деформации пород-коллекторов или выпадения конденсата в пласте в результате снижения пластового давления.

Пластовое давление залежи рпл в процессе ее разработки непрерывно снижается. Для газового режима характерен прямолинейный характер зависимости (pnл/Z) — ∑ Q, где Z — коэффициент сверхсжимаемости газа; ∑ Q — накопленная с начала эксплуатации добыча газа. Таким образом, удельная добыча газа на 0, 1 МПа снижения пластового давления при газовом режиме обычно постоянна на протяжении всего периода разработки. Эта особенность широко используется для подсчета оставшихся в залежи запасов газа по данным истекшего периода разработки. Следует отметить, что по газоконденсатным залежам зависимость пластового давления от добытого количества газа может отличаться от прямолинейной.

Режим обеспечивает достаточно высокие темпы добычи газа — по крупным залежам в период максимальной добычи до 8—10% начальных запасов в год и более. Значительного поступления попутной воды в скважины обычно не происходит. Однако иногда, несмотря на неподвижность ГВК, в часть скважин поступает некоторое количество воды, что может быть связано с перемещением ее из водоносной части пласта по трещинам или по тонким высокопроницаемым прослоям, из водосодержащих линз, прослоев или каверн, имеющихся в объеме самой залежи, и с другими причинами. Выявление источника и путей поступления воды в скважины в таких случаях требует проведения специальных геолого-промысловых исследований. Значения коэффициента извлечения газа при газовом режиме обычно высокие — 0, 9 — 0, 97. Газовый режим характерен для многих крупных газовых месторождений нашей страны.

Упруговодогазонапорный режим

Упруговодогазонапорный режим — режим, при котором в процессе разработки залежи отмечается подъем ГВК, т.е. происходит внедрение в залежь краевой воды. При этом режиме напор краевой воды всегда сочетается с действием упругих сил газа.

Масштабы внедрения в залежь воды принято оценивать коэффициентом возмещения, который равен отношению объема воды, внедрившейся в залежь за определенный период времени, к объему газа в пластовых условиях, отобранному из залежи за этот же период. Так, при внедрении в залежь 0, 2 млн. м3 воды в результате отбора 1 млн. м3 газа в пластовых условиях (при пластовом давлении 10 МПа на поверхности это составит около 100 млн. м3 газа) коэффициент возмещения будет равен 0, 2. Повышенные его значения указывают на большую роль водонапорной составляющей режима.

При этом режиме при прочих равных условиях пластовое давление снижается медленнее, чем при газовом. Интенсивность падения давления возрастает при невысокой активности законтурной области (при приуроченности залежи к элизионной водонапорной системе, при пониженной проницаемости коллекторов и др.), с увеличением темпов добычи газа и под влиянием других причин.

Действие упруговодогазонапорного режима сопровождается постепенным обводнением части скважин, в связи с чем они рано (в то время, когда залежь еще имеет высокое пластовое давление) выходят из эксплуатации. Возникает необходимость бурения вместо них дополнительных скважин. Вследствие неоднородности продуктивных отложений и неравномерности отбора газа из прослоев с разной проницаемостью происходит опережающее продвижение воды в глубь залежи по наиболее проницаемым прослоям. Это приводит к появлению воды в продукции скважин, усложнению условий их эксплуатации и раннему отключению. В итоге коэффициенты извлечения газа часто бывают меньшими, чем при газовом режиме, диапазон их значений может быть весьма широким — от 0, 5 до 0, 95 в зависимости от степени неоднородности продуктивных пластов.

От темпов продвижения контурной или подошвенной воды зависит темп падения пластового давления. Темп падения пластового давления непосредственно обуславливает падение дебитов газовых скважин, а следовательно, число скважин, необходимых для обеспечения запланированного отбора газа из месторождения. Темп падения пластового давления определяет продолжительность периодов бескомпрессорной и компрессорной эксплуатации, постоянной и падающей добычи газа, эффективной работы промысловых установок искусственного холода, дожимной компрессорной станции.

Проявление водонапорного режима иногда благоприятно сказывается на этих показателях разработки месторождения и обустройства промысла. Однако в результате продвижения воды в газовую залежь чаще приходится сталкиваться с рядом негативных последствий. Вследствие изменчивости коллекторских свойств продуктивных отложений по площади газоносности, а также неравномерного распределения отборов газа по скважинам они преждевременно обводняются. Неоднородность продуктивных отложений по толщине и неравномерность их дренирования по разрезу приводит к продвижению воды по наиболее проницаемым и дренируемым прослоям, пропласткам, что также вызывает преждевременное обводнение скважин. В результате ухудшаются технико-экономические показатели разработки месторождения. Приходится идти на дополнительные капиталовложения для добуривания новых скважин.

Отметим, что в условиях водонапорного режима процесс обводнения газовых скважин и месторождений – естественный процесс. Однако при проектировании и осуществлении разработки месторождения природного газа следует предусматривать такое число добывающих скважин, такое размещение их на площади газоносности и структуре и соответствующие технологические режимы эксплуатации, систему обустройства газового промысла, коэффициент газоотдачи, которые обеспечивали бы наибольшую народнохозяйственную эффективность. Система обустройства газового промысла в случае проявления водонапорного режима усложняется, так как необходимо предусматривать отделение от газа воды, утилизацию ее путем сброса в специальные скважины. Таким образом, третье отрицательное последствие проявления водонапорного режима связано с осложнениями, возникающими при эксплуатации скважин и системы обустройства промысла.

На практике режим месторождения природного газа определяется следующим образом. Промысловые данные об изменении пластового давления р(t) и добытом количестве газа Qдоб(t) обрабатываются в координатах p/z(p) – Qдоб(t). Если в указанных координатах фактические данные ложатся на прямую, это указывает на проявление газового режима.
Если с какого-то момента темп падения давления начинает замедляться, это свидетельствует о начале заметного поступления воды в залежь.

 

 

5. Уравнение материального баланса газовой залежи.

Это отражает закон сохранения массы применительно к газовой (газоконденсатной, газогидратной) залежи. При разработке месторождения в условиях газового режима материальный балансгазовой залежи записывается в следующем виде:

Мн = М(t) + Мдоб(t), где

Мн — начальная масса газа в пласте;

М(t) — оставшаяся в пласте масса газа к моменту времени t;

Мдоб — масса газа, добытая из залежи к моменту времени t.

Уравнение материального баланса газовой залежи лежит в основе метода определения начальных запасов газа по падению давления в пласте (используются фактические данные разработки месторождения за некоторый период времени), а также используется при определении показателей разработки газовой залежи при газовом режиме. В случае водонапорного режима при составлении материального баланса газовой залежи учитывается Мост(t) — масса газа, оставшаяся в обводнённой зоне пласта к моменту времени t, т.е.

Мн = М(t) + Мост(t) + Мдоб(t).

Уравнение применяется при проведении прогнозных расчётов, а также используется для уточнения коллекторских свойств водонапорного бассейна. В ряде случаев в уравнениях

Материальным балансом газовой залежи учитывается деформация продуктивного коллектора (изменение коэффициентапористости, а следовательно, и коэффициента газонасыщенности) при снижении пластового давления. В случае газоконденсатных и газогидратных залежей учитывают также изменение газонасыщенного объёма пласта (в газоконденсатных залежах при снижении пластового давления наблюдается выпадение конденсата из газа, вызывающее уменьшение объёма, в газогидратных — снижение давления вызывает разложение гидратов и, следовательно, увеличение газонасыщенного объёма). Для газогидратной залежи материальный баланс газовой залежи записывается с учётом баланса тепла (в связи со снижением температуры, сопровождающим процесс разложения гидратов), в баланс тепла включается также приток тепла от передачи его через кровлю и подошву пласта.

Разновидности уравнения материального баланса газовой залежи позволяют проводить газо-гидродинамические расчёты с учётом соответствующих геолого-промысловых факторов (например, с учётом перетоков газа осуществляются расчёты применительно к многопластовым месторождениям).

 

6. Характерные особенности проявления и установление режима разработки газовой залежи.

Под режимом газовой залежи или режимом работы пласта понимают проявления доминирующей формы пластовой энергии, вызывающей движение газа в пласте и обусловливающей приток газа к скважинам в процессе разработки залежи. На газовых месторождениях в основном проявляются газовый и водонапорный режимы.

Режим существенно влияет на разработку залежи и наряду с другими факторами определяет основные условия эксплуатации, к которым, например, относятся темп падения давления и дебитов газа, обводнение скважин и т. п.

Режим работы залежи зависит от геологического строения залежи; гидрогеологических условий, ее размеров и протяженности водонапорной системы; (физических свойств и неоднородности газовых коллекторов; темпа отбора газа из залежи; используемых методов поддержания пластового давления (для газоконденсатных месторождений).

Газовый режим (режим расширяющегося газа). При газовом режиме газонасыщенность пористой среды в процессе разработки не меняется, основным источником энергии, способствующим движению газа в системе пласт - газопровод, является давление, создаваемое расширяющимся газом. На глубокозалегающих газовых месторождениях незначительное влияние может оказать упругость газоносного коллектора. Этот режим проявляется в том случае, если отсутствуют пластовые воды или если они практически не продвигаются в газовую залежь при снижении давления в процессе разработки.

Водонапорный режим. Основной источник пластовой энергии при этом режиме работы газовой залежи - напор краевых (подошвенных) вод. Водонапорный режим подразделяется на упругий и жесткий.

Упругий режим связан с упругими силами воды и породы. Жесткий режим газовой залежи связан с наличием активных пластовых вод и характеризуется тем, что при эксплуатации в газовую залежь поступают подошвенные или краевые воды, в результате чего не только уменьшается объем пласта, занятого газом, но и полностью восстанавливается пластовое давление.

На практике месторождения, как правило, разрабатываются при газоводонапорном (упруговодонапорном) режиме. В этом случае газ в пласте продвигается в результате его расширения и действия напора воды. Причем количество воды, внедряющейся за счет расширения газа, значительно меньше того количества, которое необходимо для полного восстановления давления. Главным условием продвижения воды в залежь является связь ее газовой части с водоносной. Продвижение воды может привести к обводнению скважин. Это следует учитывать при расположении скважин по площади и при проектировании глубины забоя новых добывающих скважин.

При упруговодонапорном режиме вода внедряется в разрабатываемую газовую залежь за счет падения давления в системе и связанного с этим расширения пород пласта, а также самой воды.

Газовые залежи с водонапорным режимом, в которых полностью восстанавливается давление при эксплуатации, встречаются довольно редко. Обычно при водонапорном режиме давление восстанавливается частично, т. е. пластовое давление при эксплуатации понижается, но темп понижения более медленный, чем при газовом режиме.

В большинстве своем газовые месторождения в начальный период разрабатываются по газовому режиму. Проявление водонапорного режима обычно замечается, но не сразу, а после отбора из залежи 20-50% запасов газа. На практике встречаются также исключения из этого правила, например, для мелких газовых месторождений, водонапорный режим может проявляться практически сразу после начала эксплуатации.

При эксплуатации газоконденсатных месторождений с целью получения наибольшего количества конденсата путем закачки в пласт сухого газа или воды иногда создают искусственный газонапорный или водонапорный режим.

В некоторых случаях на режим работы залежи в многопластовом месторождении могут влиять условия разработки выше или нижележащих горизонтов, например при перетоках газа.

Определение режима работы залежи. До начала разработки газового месторождения можно высказать только общие соображения о возможности проявления того или иного режима. Характер режима устанавливается по данным, полученным при эксплуатации месторождения.

Режим работы залежи можно определять по уравнению материального баланса

, (2.10)

где - начальное, текущее и добытое количество газа.

Заменяя в последнем уравнении G через объем W и плотность r газа, а также выражая плотность через давление из обобщенного уравнения состояния, имеем:

, (2.11)

где рн и рт - пластовые средневзвешенные по объему порового пространства залежи абсолютные давления соответственно начальное и текущее; Wн, Wт - начальный, текущий объемы порового пространства, занятые газом; Wв - объем порового пространства, занятый водой (или другим агентом), поступившей в газовую залежь за время, соответствующее снижению давления с рн до рт; Qд - количество газа, добытое из залежи при снижении давления с рн до рт, приведенное к стандартным условиям; zн, zт, zст - коэффициенты сжимаемости соответственно при начальных, текущих и стандартных условиях (zст =1), Rн, Rт, Rст - газовая постоянная при начальных, текущих и стандартных условиях; Тни Тк - температура в залежки соответственно начальная и текущая; Тст =293К. Можно считать, что при движении газа в пласте

Так как для чисто газовых месторождений в процессе эксплуатации не происходит изменения состава газа, то

Значение R. может изменяться в процессе эксплуатации газоконденсатных месторождений.

При газовом режиме в уравнении (2.11) Wв =0 и Wн=W =const. В этом случае уравнение (2.11) перепишется в виде:

, (2.12)

где

Для газоводонапорного режима, при котором отмечается поступление воды в газовый пласт, зависимость (2.20) запишется несколько в другом виде:

. (2.13)

Газовый режим работы залежи характеризуется тем, что отношение количества газа Qд, добытого за определенный промежуток времени, к паданию давления в залежи за тот же промежуток времени согласно (2.21) есть величина постоянная:

. (2.14)

Если a в процессе эксплуатации увеличивается, то режим залежи газоводонапорный. В этом случае возможен также приток газа в залежь из других горизонтов. При утечке газа из залежи, количество которого не учитывается, значение a со временем уменьшается.

Для многопластовых место-рождений при перетоке газа из одного горизонта в другой для определения режима работы каждой залежи решают уравнение вида (2.21) или (2.23), в одно из которых добавляют, а из другого вычитают количество перетекшего газа.

 

 

7. Определение запасов газа объемным методом и методом падения пластового давления в залежи.

 

Запасы, т. е. объем газа, находящегося в пласте, определяют, исходя из геометрии порового пространства и характеристики газа.

Для элемента объема пласта dV согласно уравнению состояния реального газа имеем

, (2.24)

где dQ — запас газа в элементе газоносного пластаобъемом dV, приведенный к стандартным условиям (рст=0, 103 МПа и Тст = 293 К); р пластовое давление, МПа; Т -пластоваятемпература, К; z коэффициент сверхсжимаемости при р и Т для данного состава газа; m пористость; a — коэффициентгазонасыщенности: dW= madV —объем порового пространства элемента пласта dV.

Для обычных газоносных пластов в общем случае параметры m, р, Т, z и a переменные как по мощности, так и по площади залежи.

Запасы газа определяют путем интегрирования уравнения (2.24) в пределах: запаса газа — 0-Q, и объема V:, представленного в виде произведения площади F газаноснойчасти пласта и эффективной мощности h пласта

, (2.25)

где i – число участков, соответствующих данному значению

Методика определения запасов газа по формуле (2.25) состоит в следующем. Для каждой скважины сначала определяем удельные запасы газа

, (2.26)

где j—число продуктивных пропластков в скважине.

Удельные запасы газа, приходящиеся на каждую скважину, наносим на карту и, соединяя линиями точки с одинаковыми их значениями, строим карту удельных запасов газа. По этой карте определяем площади, соответствующие каждому значению I. Запасы газа для пласта в целом

, (2.27)

где i — число участков, соответствующих данному значению Ii.

Часто потенциальные запасы газа определяют по формуле

, (2.28)

в которой Tcp, pcp. zcp, mcp, acp
принимают либо постоянными, либо как среднеарифметические значения или же принимают средневзвешенные значения по толщине и площади каждого параметра в отдельности из соответствующих карт.

Извлекаемые запасы газа при подсчете объемным методом составят

, (2.29)

Из сказанного видно, что применяемый на практике объемный метод подсчета запасов газа с помощью формулы (2.28) требует большого объема вычислений и построения значительного числа карт, необходимых для определения средних значений параметром пласта. Каждый параметропределяют раздельно вместо интегрирования комплекса величин, как это следует из формулы (2.25), и при этом можно получить как завышенные, так н заниженные запасы газа по сравнению с фактическими.

 

 

8. Особенности приток газа к забою скважин, уравнение притока газа.

Газовая скважина является одним из важнейших элементов системы разработки и добычи природных углеводородов на месторождениях.

По своему назначению скважины подразделяются на разведочные, эксплуатационные (добывающие), нагнетательные, наблюдательные и пьезометрические, поглощающие.

Первый вид скважин предназначен для изучения особенностей геологического строения и размеров залежи, определения продуктивности и параметров пластов.

Добывающие и нагнетательные скважины применяются для управления процессами, протекающими в пласте при разработке и добыче нефти, газа и конденсата из месторождений природных углеводородов. Полученные сведения в процессе эксплуатации этих скважин позволяют получить информацию о параметрах пласта, запасах природных углеводородов, активности водонапорного бассейна.

Наблюдательные (пробуренные в области газо- и нефтеносности) и пьезометрические (пробуренные за внешнем контуром залежи скважины, в области водоносности) предназначены для контроля за процессами, протекающими в залежи.

Поглощающие скважин предназначены для закачки (утилизации) подтоварных вод.

В целом же, фонд скважин газодобывающего предприятия определяется технологической схемой разработки месторождения и может изменяться в процессе его разработки.

Одной из основных особенностей эксплуатации газовых скважин является нарушение линейного закона фильтрации, вследствие высоких скоростей движения газа в призабойной зоне пласта. Это явление, в случае нарушения закона Дарси для идеального газа на некоторый момент времени t описывается уравнением следующего вида:

 

, (2)

 

где Рк(t) – пластовое давление в районе данной скважины на тот же момент времени t;

Рс(t) – забойное давление в скважине на момент времени t; А и В - коэффициенты фильтрационных сопротивлений;

q(t) – дебит газовой скважины в момент времени t, приведенный к атмосферному давлению и стандартной температуре.

Пластовым давлением в районе скважины называется такое давление, которое установилось на забое скважины в результате её длительного простаивания (времени необходимого для выравнивания депрессионной воронки).

Второй особенностью притока газа в газовой скважине является искривление линий тока, обусловленное несовершенством скважины по характеру вскрытия и степени вскрытия и при этом возникают дополнительные фильтрационные сопротивления потоку флюида. На рисунке 1.7 приведена схема фильтрации флюидов к скважине с различными видами несовершенства.

Другой особенностью притока флюидов к скважине является двухфазная фильтрация газоконденсатной смеси.

Выпадение конденсата в призабойной и прилегающих зонах изменяет значения фильтрационных сопротивлений А и В в уравнении (2). Аналогичная картина наблюдается и при обводнении продукции скважины контурной или подошвенной водой.

Если же продуктивные пласты сложены рыхлыми, неустойчивыми коллекторами, то возникает необходимость ограничения дебита скважины с целью предотвращения разрушения призабойной зоны пласта, и как следствие – вынос частиц породы и образование песчаных пробок, эрозионного разрушения оборудования скважин и т.п.

В процессе разработки месторождений природных газов происходит падение пластового и забойного давлений, что вызывает деформацию пласта-коллектора. Это приводит к снижению коэффициентов пористости и проницаемости, вызывая при этом образование ''воронок проницаемости и пористости''. Деформационные изменения бывают упругими, упругопластическими и пластическими. В первом случае при восстановлении давления скелет пласта может достигать первоначальной структуры. Во втором случае – восстановление давления не приводит к полному восстановлению значений коэффициентов пористости и проницаемости. При пластических деформациях восстановление пластового давления они остаются на прежнем уровне.

На особенности притока газа к скважине значительно влияет высота подвески насосно-компрессорных труб (НКТ). Из опыта эксплуатации многих месторождений считается целесообразным башмак НКТ устанавливать на уровне нижних перфорационных отверстий, что предотвращает образование на забое песчано-глинистых, жидкостных пробок. В ином случае забойные пробки перекрывают нижние продуктивные интервалы, вызывают снижение дебитов скважин, избирательное дренирование, а значит и преждевременное обводнение добывающих скважин.

Такой спуск НКТ целесообразен для залежей с небольшой толщиной продуктивного пласта и терригенными коллекторами. Таким образом, вскрытая и перфорированная толщина пласта в скважине (или величина открытого забоя), глубина спуска НКТ предопределяют степень отработки продуктивных отложений по толщине.

Если в карбонатных коллекторах развита вертикальная трещиноватость, то забои скважин (и глубины спуска НКТ) следует располагать дальше от ГВК. Если для карбонатного массива характерны слоистость строения и большой этаж газоносности, то, во-первых, целесообразно выделять в разрезе отдельные эксплуатационные объекты, и, во-вторых, спускать НКТ до нижних отверстий интервала перфорации в скважинах каждого эксплуатационного объекта.

Следует отметить, что в призабойной зоне пласта из-за падения давление и за счёт эффекта Джоуля-Томсона снижается температура и в этой связи приток газа к забою скважины может сопровождаться образованием гидратов.

При эксплуатации газовых и нефтяных скважин имеют место отложения асфальто-смолистых веществ, парафина, солей, как в фонтанных трубах, так и в призабойной зоне пласта, что снижает продуктивные характеристики скважин. Эксплуатация скважин, если не принимать специальных мер, может сопровождаться коррозией труб, внутрискважинного и другого оборудования. Для газовых скважин осложнения возникают при подтягивании конусов подошвенной воды. В случае дренирования нефтяной оторочки газовые и водяные конуса являются причиной снижения эффективности работы отдельных скважин и разработки месторождения в целом.

Конструкция забоев скважин, параметры пласта и призабойной зоны и их изменение во времени определяют продуктивные характеристики скважин, следовательно, и необходимое число скважин для разработки месторождения. Особенности притока газа к скважинам необходимо учитывать при выборе и обосновании методов интенсификации притока газа к скважине.

 

 

9. Технология исследования скважин и обработки результатов для получения уравнения притока газа.

Стандартные исследования на стационарных режимах для газовых скважин проводят согласно ''Инструкции по комплексному исследованию газовых и газоконденсатных пластов и скважин'' с целью определения следующих параметров:

1. Коллекторских и фильтрационных свойств пласта (пористость, проницаемость, гидропроводность, пьезопроводность, сжимаемость пласта, газонасыщенность, пластовые, забойные и устьевые давления и температуры), их изменение по площади и разрезу пласта, а также по стволу газовой скважины.

2. Физико-химических свойств газа и жидкостей (вязкость, плотность, коэффициент сжимаемости, влажность газа), условия образования гидратов и т.д.

3. Гидродинамических и термодинамических условий в стволе скважины в процессе её эксплуатации.

4. Изменения фазовых состояний при движении газа в пласте, стволе скважины и по наземным сооружениям в процессе разработки залежи.

5. Условий скопления и выноса жидкости и твердых примесей из забоя скважины, эффективность их отделения.

6. Технологического режима работы скважин при наличии различных факторов (разрушение призабойной зоны пласта, наличие подошвенной воды, влияние температуры продуктивного пласта и окружающей ствол скважины среды и т.п.).

Исследование скважины на стационарных режимах проводится по заранее составленной программе исследовательских работ. Объём исследований, который предусмотрен программой, устанавливается на основании проектных решений или исходя из проведенных ремонтно-профилактических и интенсификационных работ. В соответствии с программой исследования и в зависимости от обустройства промысла подготавливаются соответствующие приборы, оборудования и инструмент.

Перед началом исследований скважины необходимо ознакомиться с геолого-промысловыми материалами по ней. Если процессы восстановления и стабилизации давления, дебита и забойного давления продолжаются несколько часов и более, необходимо выбрать ускоренные методы испытания скважины. Перед началом исследования следует определить давление на устье простаивающей скважины (статическое давление). Исследования следует начинать с меньшего дебита и наращивать его от режима к режиму - прямой ход. Скважину следует запускать с небольшим дебитом и дожидаться полной стабилизации забойного устьевого давления и дебита. Забой скважины при исследованиях должен быть чистым, а, если имеется столб жидкости или песчаная пробка, желательно, чтобы высота их оставалась неизменной. В противном случае коэффициенты сопротивления, определяемые по результатам испытания, будут переменными от режима к режиму, что приводит к сильному искажению индикаторной линии.

Значения забойных давлений, дебита и температуры фиксируются после полной стабилизации давления и дебита. Условия стабилизации оцениваются постоянством показаний приборов, используемых для измерения давления, перепада давлений на расходомере и температуры во времени. После снятия этих показаний на первом режиме - диафрагме (штуцере) скважину закрывают для восстановления давления до статического. Процессы пуска скважины и стабилизации давления и дебита при этом, работа скважины на установившемся режиме, восстановления давления после закрытия скважины на данной диафрагме (штуцере) составляют один режим работы скважины.

 

 

10. Характерные периоды разработки газовых и газоконденсатных месторождений

Периоды нарастающей, постоянной и падающей добычи газа характерны для крупных месторождений, запасы которых исчисляются сотнями млрд. м3. В процессе разработки средних по запасам месторождений газа период постоянной добычи газа часто отсутствует. При разработке незначительных по запасам газовых и газоконденсатных месторождений могут отсутствовать как период нарастающей, так и период постоянной добычи газа.

С точки зрения технологии добычи газа выделяются период бескомпрессорной и период компрессорной эксплуатации залежи.

С точки зрения подготовленности месторождений к разработке и степени его истощения различают периоды: опытно-промышленной эксплуатации, промышленной эксплуатации и период доразработки.

При опытно-промышленной эксплуатации месторождения наряду с поставкой газа потребителю производится его доразведка с целью получения уточненных сведений, необходимых для составления проекта разработки. Продолжительность опытно-промышленной эксплуатации месторождений природных газов не превышает, как правило, трех-четырех лет.

В процессе разработки газоконденсатных месторождений, кроме вышеперечисленных, можно выделить периоды разработки без поддержания пластового давления и разработки с поддержанием пластового давления. Период разработки без поддержания пластового давления продолжается до тех пор, пока средневзвешенное по объему газоконденсатной залежи пластовое давление не сравняется с давлением начала конденсации данной залежи.

Таким образом, в каждый период применяется своя система разработки газовой залежи. В технологическом значении этого понятия система разработки - это комплекс технических мероприятий по управлению процессом движения газа конденсата и воды в пласте.

Управление процессом движения газа, конденсата и воды в пласте осуществляется посредством следующих технические мероприятий:

определенного размещения рассчитанной числа эксплуатационных, нагнетательных и наблюдательных скважин на структуре и площади газоносности;

установления технологического режима эксплуатации скважин;

рассчитанного порядка ввода скважин в эксплуатацию;

поддержания баланса пластовой энергии.

 

 

11. Газо - и конденсатоотдача при разработке месторождений.

Потери конденсата при газовом режиме разработки увеличиваются с ростом его начального содержания (более 100 см3/м3) и плотности. При прочих равных условиях коэффициент конденсатоотдачи Кк возрастает при увеличении различия между начальным пластовым давлением и давлением начала конденсации, а также при повышенных температурах в пластах. Однако и в наиболее благоприятных условиях в большинстве случаев Кк £ 60 %.

Проявление естественного упруговодонапорного режима при избирательном обводнении приводит к увеличению потерь конденсата.

Эксплуатация газоконденсатных месторождений в режиме истощения обусловливает и другие недостатки.

1) Коэффициент газоотдачи при эксплуатации месторождений в режиме истощения существенно зависит от геологических особенностей месторождений, и прежде всего от активности контурных вод, а также от экономико-географических факторов. Опыт эксплуатации газовых месторождений в США показывает, что средний коэффициент газоотдачи Кг при газовом режиме разработки равен 0, 85. Следует отметить, что эти данные получены для мелких месторождений, расположенных вблизи потребителя, и поэтому они близки к предельным. Из факторов, влияющих на Кг, особенно следует отметить удаленность месторождения от потребителя, что обусловливает давление забрасывания.

В условиях проявления водонапорного режима коэффициент газоотдачи обычно понижается: есть данные, что минимальные значения его в гранулярных пластах могут составить около 0, 45. В СССР имеется -ряд месторождений с активной водонапорной системой, в которых конечные значения Кг находятся на уровне 0, 5 (месторождения Краснодарского края, Волгоградской области) или близки к нему. Вместе с тем есть месторождения, на которых при проявлении упруговодонапорного режима, судя по литературным данным, получены или планируются значения Кг на уровне 0, 8 и выше. В пластах с вторичной пористостью, и прежде всего в трещиноватых, Кг в среднем ниже.

Однако приводимые в литературе высокие значения коэффициентов газоотдачи при проявлении водонапорного режима часто обусловлены тем, что расчет Кг проводят по отношению к промышленным запасам газа, рассчитанным объемным методом. Последние же, как показал специальный анализ 122 залежей, для которых запасы были с высокой надежностью определены по падению давления, систематически занижены примерно па 15 % по отношению к фактическим и характеризуются случайной погрешностью на уровне 30 %.

Анализ разработки газовых месторождений, эксплуатирующихся в условиях активного естественного упруговодонапорного режима, показывает, что основная причина снижения газоотдачи — нерегулируемое избирательное обводнение.

Разработка месторождений в режиме истощения обусловливает необходимость уменьшения темпа отбора газа при извлечении примерно 50 % начальных запасов. Длительность периода постоянной добычи и коэффициент газоотдачи определяются начальным пластовым давлением, продуктивностью скважин, запасами, темпом отбора газа, а также активностью водонапорной системы. В среднем на конец периода постоянной добычи коэффициент извлечения газа практически при газовом режиме не превышает 60 % геологических запасов газа. Если учесть, что в период нарастающей добычи извлекается примерно 10 % начальных запасов газа и более, то в период постоянной добычи газа даже при газовом режиме извлекается не более 50 % начальных запасов газа.

При проявлении активного водонапорного режима с нерегулируемым избирательным обводнением объем добычи при постоянном темпе отбора сокращается. Так, на Ленинградском месторождении в период постоянной добычи было извлечено примерно 40 % начальных запасов газа.

При проявлении естественного водонапорного режима практически невозможен долгосрочный прогноз эксплуатационных показателей, что особенно недопустимо при эксплуатации крупных газоконденсатных месторождений. Так, например, по Ленинградскому месторождению, согласно проекту разработки, предполагалось сохранить до 1973 г. годовую добычу газа на уровне не менее 3%, а фактическая добыча в 1972 г. была менее 1 % начальных запасов газа, а в 1973 г.—менее 0, 5%, т. е. соответственно в 3 и 6 раз ниже проектной. Следует отметить, что столь существенное расхождение обусловлено трудностями прогноза, а не случайными ошибками в проекте, который полностью соответствовал уровню развития теории эксплуатации газовых залежей на период его составления.

Таким образом, при проектировании системы разработки газовых и газоконденсатных месторождений на режиме истощения практически можно планировать режим постоянной добычи не более чем на Кг=50 % геологических запасов газа. Для уникальных и одиночных месторождений это обусловливает необходимость ориентироваться при технико-экономических расчетах на оценку максимальной годовой добычи и в период постоянной добычи практически также лишь 50 % от геологических запасов газа, поскольку недозагрузка магистральных газопроводов большой протяженности в проектный срок их эксплуатации приведет к резкому повышению приведенных затрат на газ, добываемый из таких месторождений. В связи с этим, с одной стороны, возникает проблема доразработки месторождений на режиме падающей добычи, которая будет особенно существенной для наиболее удаленных и крупных месторождений, с другой стороны, создаются объективные предпосылки к длительной консервации газа и установлению годовых отборов на уровне, не превышающем 3 % начальных. Такие отборы не всегда оптимальны и для получения высокого коэффициента газоотдачи.

Падение пластового давления в залежах в большинстве случаев вызывает снижение продуктивности скважин при рабочих депрессиях. Это приводит к необходимости вести большой объем дополнительного эксплуатационного бурения, что весьма сложно в труднодоступных районах. Опережающее эксплуатационное бурение не всегда оправдано в случае проявления активного водонапорного режима и при малой изученности эксплуатационных объектов, так как может привести к заложению скважин в зонах, отбор из которых будет затруднен при избирательном обводнении залежи. Одним из факторов, обусловливающих уменьшение продуктивности скважин, является уменьшение проницаемости пластов с падением давления, что наиболее существенно для пластов, проницаемость которых низка при начальном давлении. В пластах с глинистым цементом проницаемость может уменьшаться в 10 раз и более.

К важным факторам, обусловливающим снижение газоотдачи при разработке газовых месторождений на любом режиме, относится нелинейность фильтрации газа при малых градиентах давления, которая в предельном случае эквивалентна наличию начального градиента давления t0. Иначе говоря, фильтрация происходит таким образом, что при градиентах давления, меньших по абсолютной величине, чем t0, движение практически отсутствует. Наличие начального градиента при фильтрации газа приводит к снижению как газо- и конденсатоотдачи, так и дебитов скважин вследствие образования застойных зон, иногда очень обширных, где газ неподвижен из-за недостаточного градиента давления. Влияние начального градиента в ходе разработки газовых и газоконденсатных месторождений осложняется тем, что начальный градиент в значительной степени зависит от водонасыщенности и эффективного давления, т. е. от разности между горным и внутрипоровым давлением. С ростом водонасыщенности начальный градиент давления при фильтрации газа через глинизированную породу значительно возрастает. Он отличен от нуля только при водонасыщенности больше некоторой предельной и увеличивается с ростом эффективного давления. Отмеченные зависимости необходимо учитывать при оценке влияния режима разработки на газоотдачу в связи с нелинейностью закона фильтрации и начальным градиентом. Разработка месторождений в режиме истощения происходит при больших градиентах, чем в случае внутриконтурного заводнения, в связи с чем часть застойных зон по мере снижения пластового давления и роста градиента начинает дренироваться. Однако, с другой стороны, при снижении пластового давления возрастает эффективное давление, действующее на пласт, что, как уже отмечалось, приводит к росту начального градиента в малопроницаемых прослоях. Рост начального градиента для газа в ходе разработки может привести к тому, что малопроницаемые прослои превратятся в непроницаемые и будет отрезана и перестанет дренироваться часть коллектора.

Наконец, при нерегулируемом или плохо регулируемом обводнении часть малопроницаемых прослоев может преждевременно обводниться и в них возникнет начальный градиент для газа. Такая опасность существует как при естественном, так и при искусственном обводнении и указывает на необходимость тщательного изучения разреза для контроля за разработкой.

Проявление естественного водонапорного режима при избирательном обводнении на фоне указанных явлений приводит к еще большему снижению коэффициента газоотдачи в результате образования недренируемых целиков газа по площади залежи, специальное разбуривание которых в большинстве случаев малоэффективно, так как вновь пробуренные скважины быстро обводняются.

Все это вызывает необходимость повышения эффективности системы эксплуатации газовых и особенно газоконденсатных месторождений.

В мировой практике при эксплуатации газоконденсатных месторождений с содержанием конденсата более 25 см3/м3 наряду с эксплуатацией их на режиме истощения применяется сайклинг-процесс, позволяющий существенно повысить коэффициент конденсатоотдачи. Сайклинг-процесс широко применяется на месторождениях с содержанием конденсата более 100 см3/м3 и при запасах газа от 10 млрд. м3 и более при близости начального пластового давления и давления начала конденсации. Недостатки применения сайклинг-процесса широко известны, из них к основным относятся следующие:

- большие капитальные вложения и необходимость создания специального оборудования при эксплуатации месторождений с высокими пластовыми давлениями; большие эксплуатационные затраты;

- понижение надежности промыслового оборудования (скважинного и наземного) в связи с увеличением срока эксплуатации, особенно при наличии агрессивных компонентов в добываемой продукции.

Однако принципиально поддержание пластового давления при эксплуатации газовых и газоконденсатных залежей весьма целесообразно. Наиболее пригодный метод поддержания пластового давления—закачка воды. Идея задачки воды в газовые и газоконденсатные залежи многократно обсуждалась, но не была реализована на практике, так как по результатам ранее выполненных лабораторных и промысловых исследований считалось, что вытеснение газа водой сопровождается интенсивным защемлением газа. Полагали, что коэффициент извлечения газа не превышает 50%, т. е. примерно соответствует реально достигаемым значениям нефтеотдачи залежей, разрабатываемых при искусственном водонапорном режиме. При этом не учитывался ряд принципиально важных факторов, различающих механизмы вытеснения водой нефти и газа. Газ благодаря относительно малой вязкости в меньшей мере подвержен блокированию водой как в масштабе пор, так и макронеоднородностей пласта. В результате коэффициенты вытеснения и охвата при регулируемом заводнении должны быть значительно выше, чем для нефтяных залежей. Большая подвижность газа упрощает и проблему регулирования продвижения воды. Известно также, что при проявлении начального градиента фильтрации для воды даже в нефтяных пластах коэффициент отдачи возрастает. Это обстоятельство благоприятствует возможности контроля за распределением закачиваемой поды, которую можно селективно направлять в зоны газового пласта, заранее выбранные для заводнения.

 

 

12. Факторы ограничивающие производительность скважин.

К факторам, ограничивающим работу скважин относятся:

1) Геологические (природные): условие разрушения скелета горных пород (разрушение ПЗП); образование конусов воды и преждевременное обводнение скв.; давление начала конденсации; продвижение пластовых вод; наличие сероводорода; коррозия скв.; обратное промерзание ММП;

2) Технико-технологические: при эксплуатации скв. – выделение конденсационной воды из потока газа (может произойти самоглушение скв.); выделение газового конденсата; температурный режим работы скв.; гидратообразование;

3)Технико-экономические: сочетают оптимизацию природных и технологических факторов с учетом проведения экономического расчета.

Максимально допустимый дебит (МДД) скв. – максимальный дебит, при котором еще соблюдаются условия избранного оптимального технологического режима эксплуатации скв., т.е. при котором еще не наступает разрушение ПЗП, подтяжка подошвенных вод, гидратный режим работы скв. и т.д.

Минимально необходимый дебит (МНД) – дебит скв., при котором так же сохраняются условия избранного оптимального технологического режима, т.е. при Qраб < QМНД, уже не обеспечиваются скорости фильтрации в башмаке НКТ, позволяющие выносить песок с забоя скв., нарушается оптимальный температурный режим ее работы.

 

 

13. Технологический режим эксплуатации скважин и его установление.

В процессе добычи газа из газовой залежи скважины, шлейфы, сепараторы, теплообменники, абсорберы, десорберы, турбодетандеры, компрессоры и другое оборудование промысла работает на определенном технологическом режиме.

Технологическим режимом эксплуатации газовых скважин называется рассчитанное изменение во времени дебита, давления, температуры и состава газа на устье скважины при принятом условии отбора газа на забое скважины. Условием отбора газа на забое скважины называется математическая запись фактора, ограничивающей дебит скважины при ее эксплуатации.

В предыдущей главе отмечалось, что технологический режим эксплуатации скважин зависит от типа газовой залежи (пластовая, массивная), начального пластового давления и температуры, состава пластового газа, прочности пород газовмещающего коллектора и других факторов. Он устанавливается по да






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.