Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Основные термины и определения






Основные термины и определения, относящиеся к установке и закреплению заготовок и деталей в приспособлениях, определены ГОСТ 21495-76.

Базирование – придание заготовке или изделию требуемого положения относительно выбранной системы координат.

Схема базирования – схема расположения опорных точек на базах заготовки или изделия.

Закрепление – приложение сил или пар сил к заготовке или изделию для обеспечения их положения, достигнутого при базировании.

Установка – процесс базирования и закрепления заготовки или изделия.

Погрешность установки – отклонение фактически достигнутого положения заготовки или изделия от требуемого.

 

Последовательность проектирования технологической оснастки

1. Анализ исходных данных и формулирования служебного назначения приспособления.

2. Выбор группы приспособления.

3. Уточнение схемы базирования заготовки

4. Определение направления действия сил и моментов резания при механической обработке деталей. Выявление других внешних сил.

5. Определение вида опорных элементов и установочных устройств.

6. Выбор формы рабочей поверхности опорных элементов.

7. Выбор места приложения зажимных усилий.

8. Определение количества точек зажима.

9. Определение вида зажимающих элементов.

10. Выбор формы рабочей поверхности зажима.

11. Разработка компоновки приспособления.

12. Составление расчетной схемы и исходного уравнения для расчета зажимного усилия Рз (W).

13. Выбор типа зажимного устройства и силового механизма. Определение необходимого исходного усилия Ри (Q).

14. Расчет приводов зажимных устройств.

15. Расчет размерных цепей.

16. Расчет точности сконструированного приспособления.

17. Расчеты экономической целесообразности применения сконструированного приспособления.

18. Расчет деталей приспособлений на прочность.

19. Оформление рабочей документации.

 

Основная литература

1. Горошкин А.К. Приспособления для металлорежущих станков М.: Машиностроение, 1979, - 303 с. ил.

2. Корсаков B.C. Основы конструирования приспособлений М.: Машиностроение, 1983, - 227 с.

3. Уткин Н.Ф, Приспособления для механической обработки Л.: Лениздат, 1983, -П5 с., ил.

4. Кузнецов Ю.И. и др. Оснастка станков с ЧПУ. Справочник.- М.: Машиностроение, 1983, - 350 с., ил.

5. Станочные приспособления. Справочник в 2-х том, / Под ред. Вардашкина Б.Н. и др. - М.: Машиностроение, 1984, ил.

6. Верников А.Я. Магнитные и электромагнитные приспособления в металлообработке. - М.: Машиностроение, 1984, ил.

7. Переналаживаемая технологическая оснастка. /Под ред. Д.И.Полякова. -М.: Машиностроение, 1988.

8. Кузнецов Ю.И. и др. Приспособления и оснастка для базирования и крепления деталей типа тел вращения на металлорежущих станках М.: ВНИИТЭМР, 1991.

9. Альбом по проектированию приспособлений. Учебное пособие для студентов машиностроительных специальностей вузов.- М.: Машиностроение, 1991.

 

Дополнительная литература

1. Козырев Ю.Г. Промышленные роботы. Справочник. -М.: Машиностроение, 1983, - 375 с.

2. Ракович А.Г. Автоматизация проектирования приспособлений для металлорежущих станков. -М.: Машиностроение, 1980.

3. Справочник технолога по автоматическим линиям / Под ред. Косиловой А.Г. - М.: Машиностроение, 1982 - 320 с. ил.

4. Технологическая оснастка многократного пользования. / Под ред. Д.И.Полякова. -М.: Машиностроение, 1981 - 408 с., ил.

 

 

ЛЕКЦИЯ 1

1. Разработка схемы базирования заготовки. Выбор установочных элементов

1.1. Анализ исходных данных и формулирование служебного назначения приспособления

В качестве исходных данных конструктор приспособления должен иметь: чертеж заготовки и детали с техническими требованиями их приемки; операционные чертежи на предшествующую и выполняемую операции; операционные карты технологического процесса обработки данной детали.

В результате анализа исходных данных выявляют: последовательность и содержание операций; принятое базирование; используемое оборудование и инструмент; режимы резания; запроектированную производительность с учетом времени на установку, закрепление и снятие обработанной детали; размеры, допуски, шероховатость обрабатываемых поверхностей деталей; марку и вид термической обработки материала.

Служебное назначение приспособления – это максимально уточненная и четко сформулированная задача, для решения которой оно предназначено. При формулировании служебного назначения необходимо учитывать данные о закрепляемой детали (количество, форма, размеры, качество поверхностей, материал, вид термообработки), точности изготовления, производительности, характеристике привода, окружающей среде (температуре, влажности, запыленности, виде энергии и т.д.), о внешнем виде, технике безопасности, степени автоматизации и т.д.

1.2. Классификация технологической оснастки

По целевому назначению приспособления делят на следующие группы:

1. Станочные для установки и закрепления обрабатываемых заготовок. Эти приспособления подразделяют на сверлильные, фрезерные, расточные, токарные и др. (по группам станков).

2. Станочные для установки и закрепления рабочего инструмента. К ним относятся патроны для сверл, разверток, метчиков, многошпиндельные сверлильные и фрезерные головки, инструментальные державки для токарно-револьверных станков и автоматов и другие устройства. Эти приспособления называются вспомогательным инструментом.

3. Сборочные, используемые для соединения деталей в изделия. Применяют следующие типы приспособлений: а) для крепления базовых деталей собираемого изделия; б) для обеспечения правильной установки соединяемых элементов изделия; в) для предварительного деформирования устанавливаемых упругих элементов (пружин, разрезных колец); г) для запрессовки, клепки, развальцовывания и других операций, когда при сборке требуются большие силы.

4. Контрольные, применяемые для проверки заготовок при промежуточном и окончательном контроле деталей, а также при сборке машин.

5. Приспособления для захвата, перемещения и перевертывания заготовок, деталей и собираемых изделий.

По степени специализации станочные приспособления делят на следующие группы: универсально-безналадочные (УБП), универсально-наладочные (УНП), универсально-сборные (УСП), сборно-разборные (СРП), неразборные специальные (НСП), специализированные наладочные (СНП).

К группе УБП относятся универсальные приспособления общего назначения: центры, поводковые устройства, оправки, токарные патроны, цанговые приспособления, плиты магнитные и электромагнитные, столы и т.д. Они изготовляются как принадлежность к станку заводом изготовителем станков или специализированными предприятиями. УБН применяют в единичном и мелкосерийном производстве; на станках с ЧПУ – в мелкосерийном производстве.

Группа УНП включает приспособления, состоящие из постоянной части и сменных наладок. Постоянная часть во всех случаях остается неизменной, а сменная наладка заменяется в зависимости от конкретной обрабатываемой детали. Постоянная часть включает в себя корпус и зажимное устройство с приводом (чаще пневматическим). Иногда в нее встраивают делительное устройство и другие элементы, кроме опорных и направляющих. Постоянная часть изготавливается заранее и применяется многократно. Перед очередным использованием УНП требуется произвести лишь смену наладки или некоторую дополнительную обработку. Наладка представляет собой сменные опорные и направляющие элементы. Каждый комплект наладки предназначен только для данной детали и конкретной операции ее обработки и в этом случае является специальным. С помощью УНП заготовка устанавливается с такой же точностью и быстротой, как и при использовании дорогостоящего специального приспособления. Универсальность УНП несколько ограничена определенными размерами постоянной части, которая обычно нормализуется в пределах предприятия или отрасли. К числу нормализованных приспособлений, на базе которых собирают УНП, относятся машинные тиски, скальчатые кондукторы, пневматические патроны со сменным кулачками, планшайбы с переставными угольниками для растачивания на токарном станке деталей сложной формы и т.д. УНП применяют в серийном производстве; на станках с ЧПУ – в мелкосерийном производстве.

УСП включают приспособления, компонуемые из нормализованных деталей и узлов. Каждая компоновка УСП обладает всеми основными свойствами специального приспособления: предназначена для обработки конкретной детали на определенной операции и обеспечивает базирование заготовки без выверки и требуемую точность. По истечении надобности в таком приспособлении оно разбирается на составные детали и узлы, которые могут быть многократно использованы для компоновки других приспособлений. Отличительной особенностью УСП является крестообразное взаимно-перпендикулярное расположение на сопрягаемых поверхностях Т-образных и шпоночных пазов. Основные детали и сборочные единицы, из которых компонуются УСП условно подразделяются на семь групп: 1) базовые детали (плиты прямоугольные и круглые, угольники); 2) корпусные детали (опоры, призмы, подкладки и т.д.); 3) установочные детали (шпонки, штыри, пальцы и т.д.); 4) прижимные детали (прихваты, планки); 5) крепежные детали (болты, шпильки, винты и т.д.); 6) разные детали (ушки, вилки, хомутики, оси, рукоятки и т.д.); 7) сборочные единицы (поворотные головки, кронштейны, центровые бабки и др.).

В приборостроении и машиностроении используют комплекты УСП-8 с шириной пазов 8 мм и диаметром крепежных элементов (8 мм для обработки малогабаритных заготовок (220(120(100 мм). УСП-12 предназначены для обработки заготовок размерами 700(400(200 мм, а УСП-16 для заготовки размерами 2500(2500(1000 мм.

УСП применяют в единичном и мелкосерийном производстве. При использовании вместо ручных зажимов гидро- или пневмозажимов УСП можно применять и в крупносерийном производстве. На станках с ЧПУ УСП применяются в единичном и мелкосерийном производстве.

Система СРП является разновидностью системы УСП. В компоновках СРП в отличие от УСП количество сборочных единиц преобладает над деталями. Приспособления переналаживаются посредством перекомпоновки, регулирования положения базирующих и зажимных элементов или замены сменных наладок. СРП обычно собирают на период выпуска определенного изделия. После обработки партии деталей приспособление снимают со станка и хранят до запуска в обработку новой партии. Разбирают СРП только при смене объекта производства. Компоновки СРП собирают из стандартных деталей и сборочных единиц, фиксируемых относительно друг друга системой палец-отверстие. Для этой цели в базовых деталях имеются сетки точных координатно-фиксирующих отверстий. К столу станка детали и сборочные единицы СРП крепятся посредством Т-образных пазов. СРП применяются в единичном и мелкосерийном производстве, а на станках с ЧПУ – в мелкосерийном производстве.

Приспособления группы НСП служат для обработки только определенной детали на одной конкретной операции. Специальные приспособления обладают большими преимуществами – позволяют без выверки придать заготовке требуемое положение относительно станка и режущего инструмента и благодаря этому при одной настройке обработать всю партию заготовок. К НСП относятся патроны для токарных автоматов и полуавтоматов, мембранные патроны, гидропластмассовые приспособления и др. НСП применяются в крупносерийном и массовом производствах. На станках с ЧПУ такие приспособления можно применять лишь как исключение, если нельзя применить ни одну из переналаживаемых систем.

К группе СНП относятся специальные приспособления, обладающие определенной универсальностью вследствие введения в их конструкцию элементов, допускающих наладку приспособления путем регулировки. Благодаря этому, одно и то же приспособление можно применять для обработки ряда деталей одной конструкторско-технологической группы. К СНП относятся переналаживаемые планшайбы, патроны, оправки, кондукторы, и т.д. СНП применяют в серийном и крупносерийном производствах; на станках с ЧПУ – в серийном производстве.

Кроме вышеперечисленных групп приспособлений на станках с ЧПУ и обрабатывающих центрах используются и другие группы приспособлений: механизированные универсально-сборные (УСПМ) и универсально-сборные переналаживаемые (УСПО).

1.3. Разработка схемы базирования заготовки

Каждое приспособление должно обеспечивать выполнение всех функций, обусловленных операцией. Среди них главной является базирование заготовки, то есть придание ей требуемого положения в приспособлении. После базирования заготовку необходимо закрепить, чтобы она сохранила при обработке неподвижность относительно приспособления.

Базирование и закрепление – это два разных элемента установки заготовки. Они выполняются последовательно. Базирование нельзя заменить закреплением. Если из шести опорных точек отсутствует одна или несколько, то у заготовки остается одна или несколько степеней свободы. Это значит, что в направлении отсутствующих опорных точек положение заготовки не определено и заменить отсутствующие опорные точки закреплением с целью базирования нельзя. В табл. 1.1 приведены схемы базирования заготовок для различных случаев механической обработки.

Таблица 1.1 Схемы базирования и закрепления заготовок

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.4. Определение направления действия сил и моментов резания при механической обработке деталей

При обработке заготовки на нее действуют силы резания. Их величина, направление и место приложения могут изменяться в процессе обработки одной поверхности, влияя на положение заготовки в приспособлении. В табл. 1.2 показаны примеры действия сил и моментов резания для различных случаев обработки.

 

Таблица 1.2 Схемы действия сил и моментов резания для различных случаев обработки деталей

   
   
   
   
   
   

Кроме сил резания на заготовку действуют объемные силы (силы тяжести, центробежные, инерционные) и второстепенные.

Сила тяжести заготовки учитывается при установке на вертикальные или наклонные поверхности установочных элементов.

Центробежные силы возникают в процессе обработки при смещении центра тяжести заготовки относительно ее оси вращения.

Инерционные силы имеют значение, когда заготовка совершает возвратно-поступательное движение или вращается с большим угловым ускорением.

К второстепенным силам относятся силы, возникающие при отводе режущего инструмента (сверла, метчика, зенкера).

 

1.5. Определение вида опорных элементов и формы их рабочей поверхности

Опорные элементы имеют разнообразную конструкцию, которая зависит от формы базы и числа лишаемых степеней свободы. Они разделяются на основные и вспомогательные опоры. Кроме того, опоры бывают неподвижными, подвижными, плавающими и регулируемыми.

Основные опорные элементы характеризуются тем, что каждый из них реализует одну или несколько опорных точек для базирования заготовки. Будучи соответствующим образом размещенными в приспособлении, они образуют необходимую при выбранном способе базирования совокупность опорных точек. К основным опорам относятся: опорные штыри, пальцы, пластины, центры, призмы (ГОСТ 12193-12197, 12209-12216, 13440-13442, 4743), представленные на рис. 1.1 – 1.4.

Рис. 1.1. Опорные штыри.

Рис.1.2. Элементы для установки заготовок по наружным и внутренним цилиндрическим поверхностям: а, б, в, г – пальцы постоянные соответственно с буртом, без бурта и сменные с буртом и без бурта.

Рис. 1.3. Опорные пластины.

Рис. 1.4. Элементы для установки заготовок по наружным и внутренним цилиндрическим поверхностям: а, б – призмы широкая и узкая сдвоенная.

Вспомогательные опорные элементы отличаются тем, что они подводятся к заготовке после того, как она получила необходимое базирование с помощью основных элементов. Такие опоры используются для увеличения числа точек контакта заготовки с приспособлением с целью повышения жесткости системы. К вспомогательным опорам относятся регулируемые и плавающие одиночные опоры, люнеты (ГОСТ 4084-4086, 4740).

Рис. 1.5. Регулируемые винтовые опоры.

 

Неподвижные опоры используют только в качестве основных. К ним относятся опорные штыри, пластины, призмы, центры.

Регулируемые опоры применяются в качестве основных и вспомогательных опор. Как основные они служат для установки заготовок необработанными поверхностями при больших изменениях припуска на механическую обработку, а также при выверке заготовок по разметочным рискам.

Плавающие опоры обычно применяют в качестве вспомогательных, но если заготовка имеет сложную форму и установить ее только на постоянные опоры трудно, то плавающие опоры можно применять в качестве основных.

К подвижным опорам относятся люнеты, призмы и т.п.

В табл. 1.3 показано графическое обозначение опор в технологической документации согласно ГОСТ 3.1107-81.

При установке заготовки на опорные элементы необходимо правильно выбрать форму рабочей поверхности опоры в зависимости от вида базовой плоскости заготовки и метода ее обработки.

Рис. 1.6. Сблокированные и плавающие опоры.

Таблица 1.3 Графическое обозначение опор

Для выполнения базирования заготовки плоской базой в приспособлении необходимо иметь три опорные точки, расположенные в одной заданной плоскости, но не на одной прямой. Это достигается с помощью различных сочетаний основных опорных элементов: трех опорных штырей, двух опорных пластин, плоскостью опорного элемента.

Базирование с помощью трех опорных штырей применяется в основном, когда плоская главная база заготовки не обработана. В данном случае используют штыри с насеченной и сферической головками. Для установки заготовок с обработанными базами используют штыри с плоской головкой.

Базирование с помощью двух опорных пластин – наиболее распространенный способ ориентирования заготовок с обработанным базами. Две опорные пластины реализуют три опорные точки, поэтому базирование на две пластины полностью отвечает требованиям теоретической механики.

Базирование на плоскость опорного элемента используется только для ориентирования чисто и точно обработанных баз. Примером такого базирования является установка заготовок на плоскость магнитной плиты.

Для базирования заготовок, имеющих основную базу в виде обработанной цилиндрической поверхности, используют широкие опорные призмы, самоцентрирующие патроны, оправки, центры, цанги, гидропластные патроны, конуса. Для базирования необработанных цилиндрических баз используют узкие призмы, трехкулачковые патроны.

В табл.1.4 приведено графическое обозначение основных форм рабочей поверхности опорных элементов.

Для установки деталей типа тел вращения используются установочные устройства: центры, оправки и патроны. В табл. 1.5 показано графическое обозначение установочных устройств.

Таблица 1.4 Основные формы рабочей поверхности

 

Таблица 1.5 Обозначение установочных устройств

 

 

 

Контрольные задания.

Задание 1.1.

Как классифицируется технологическая оснастка по целевому назначению?

Задание 1.2.

На какие группы делятся станочные приспособления по степени специализации?

Задание 1.3.

Какие силы действуют на заготовку во время ее обработки?

Задание 1.4.

Как классифицируются опорные элементы?

Задание 1.5.

Графическое обозначение опор, установочных устройств и основной формы рабочей поверхности опорных элементов.

 

ЛЕКЦИЯ 2

2. Расчет точности базирования заготовок деталей

2.1. Погрешность базирования при установке вала на призму

Рис. 2.1. Схема для определения погрешностей базирования при установки вала, уста на призму.

При обработке вала в призме могут быть могут быть следующие измерительные базы для размера h.

Рис. 2.2. Измерительные базы при обработке вала в призме.

На рис. 2.1 представлена схема установки вала на призму для обработки в размер h (h1; h2; h3). Диаметр вала может колебаться в пределах:

Измерительной базой является:

для размера h1 – т.А (А/; А//)

для размера h2 – т.В (В/; В//)

для размера h3 – т.С (С/; С//)

Установочной базой является т. К (К/; К//). Инструмент постоянно настроен на размер Н. Поскольку установочная и измерительная базы не совпадают, то погрешность базирования .

Для h1:

;

;

;

тогда:

.

По аналогии:

Следовательно:

По аналогии:

;

.

Обозначим через

Таблица 2.1 Значение коэффициентов К.

2.2. Погрешность базирования при установке вала на жесткий центр

Рис. 2.3. Схема установки вала на жесткий центр.

На рис. 2.3 представлена схема установки вала на жесткий и подвижный центры для обработки ступени вала в размер l.

Диаметр центрового отверстия может колебаться в пределах

.

Измерительной базой для размера l будет левый торец вала. Перемещение суппорта станка прекращается выключением подачи при достижении резцом размера С. Так как измерительная и установочная база не совпадают, то .

.

, если вместо жесткого центра применить конструкцию плавающего центра. В результате этого торец вала станет установочной базой.

2.3. Погрешность базирования при установке корпусной детали на плоскость и два отверстия перпендикулярные плоскости

Рассмотрим погрешность базирования с использованием установочных пальцев, один из которых срезанный.

Рис. 2.4. Схема для определения погрешности базирования при установке корпусной детали на два пальца.

Если оба пальца цилиндрические, то должно выполняться неравенство:

При установке на цилиндрический и срезанный:

где: X – увеличенный зазор после среза пальца; – допуск на расстояние между осями отверстий; – допуск на расстояние между осями пальцев.

В данном случае без среза пальца нормальная установка на два цилиндрических пальца невозможна, так как обычно допуск на размер L больше, чем сумма зазоров в сопряжениях двух пальцев.

где: – допуск размера L; S1 и S2 – зазоры.

Измерительной базой являются:

· для размера l1 – ось первого отверстия заготовки;

· для размера l2 – ось второго отверстия заготовки.

Установочной базой являются цилиндрические поверхности отверстий.

В данном случае установочная и измерительная база не совпадают .

Для определения погрешности базирования надо найти зазоры.

Опустив промежуточные выводя, имеем:

.

Следовательно, чем меньше хорда b, тем больше зазор X.

Однако, применение срезанных пальцев с небольшой хордой «b» приводит к быстрому износу пальцев.

Теперь можно написать:

2.4. Определение величины поворота детали при установке ее по плоскости и отверстиям на два пальца

Рис. 2.5. Схема для определения величины поворота детали.

Предполагаем худший предельный случай, когда зазоры максимальные.

Из построения имеем:

Контрольные задания.

Задание 2.1.

Какими могут быть измерительные базы для размера h (h1, h2, h3) при установке вала на призму?

Задание 2.2.

Когда погрешность базирования детали равна нулю?

Задание 2.3.

Какое неравенство должно соблюдаться при установке детали на два цилиндрических пальца?

Задание 2.4.

Как определить величину поворота детали при установке ее по плоскости и отверстиям на два пальца?

 

3. Зажимные элементы приспособлений

3.1. Выбор места приложения зажимных усилий, вида и количества зажимных элементов

При закреплении заготовки в приспособлении должны соблюдаться следующие основные правила:

· не должно нарушаться положение заготовки достигнутое при ее базировании;

· закрепление должно быть надежным, чтобы во время обработки положение заготовки сохранялось неизменным;

· возникающие при закреплении смятие поверхностей заготовки, а также ее деформация должны быть минимальными и находиться в допустимых пределах.

· для обеспечения контакта заготовки с опорным элементом и устранения возможного его сдвига при закреплении зажимное усилие следует направлять перпендикулярно к поверхности опорного элемента. В отдельных случаях зажимное усилие можно направлять так, чтобы заготовка одновременно прижималась к поверхностям двух опорных элементов;

· в целях устранения деформации заготовки при закреплении точку приложения зажимного усилия надо выбирать так, чтобы линия его действия пересекала опорную поверхность опорного элемента. Лишь при закреплении особо жестких заготовок можно допускать, чтобы линия действия зажимного усилия проходила между опорными элементами.

3.2. Определение количества точек приложения зажимных усилий

Количество точек приложения зажимных усилий определяется конкретно к каждому случаю зажима заготовки. Для уменьшения смятия поверхностей заготовки при закреплении необходимо уменьшать удельное давление в местах контакта зажимного устройства с заготовкой путем рассредоточения зажимного усилия.

Это достигается применением в зажимных устройствах контактных элементов соответствующей конструкции, которые позволяют распределить зажимное усилие поровну между двумя или тремя точками, а иногда даже рассредоточить по некоторой протяженной поверхности. К оличество точек зажима во многом зависит от вида заготовки, метода обработки, направления силы резания. Для уменьшения вибрацийи деформаций заготовки под действием силы резания следует повышать жесткость системы заготовка-приспособление путем увеличения числа мест зажатия заготовки и приближения их к обрабатываемой поверхности.

3.3. Определение вида зажимных элементов

К зажимным элементам относятся винты, эксцентрики, прихваты, тисочные губки, клинья, плунжеры, прижимы, планки.

Они являются промежуточными звеньями в сложных зажимных системах.

3.3.1. Винтовые зажимы

Винтовые зажимы применяют в приспособлениях с ручным закреплением заготовки, в приспособлениях механизированного типа, а также на автоматических линиях при использовании приспособлений-спутников. Они просты, компактны и надежны в работе.

Рис. 3.1. Винтовые зажимы: а – со сферическим торцем; б – с плоским торцем; в – с башмаком.

Винты могут быть со сферическим торцем (пятой), плоским и с башмаком, предупреждающим порчу поверхности.

При расчете винтов со сферической пятой учитывается только трение в резьбе.

где: L - длина рукоятки, мм; - средний радиус резьбы, мм; - угол подъема резьбы.

где: S – шаг резьбы, мм; – приведенный угол трения.

где: Pu 150 Н.

Условие самоторможения: .

Для стандартных метрических резьб , поэтому все механизмы с метрической резьбой самотормозящие.

При расчете винтов с плоской пятой учитывается трение на торце винта.

Для кольцевой пяты:

где: D – наружный диаметр опорного торца, мм; d – внутренний диаметр опорного торца, мм; – коэффициент трения.

С плоскими торцами:

Для винта с башмаком:

где:

Материал: сталь 35 или сталь 45 с твердостью HRC 30-35 и точностью резьба по третьему классу.

3.3.2. Клиновые зажимы

Клин применяется в следующих конструктивных вариантах:

1. Плоский односкосый клин.

2. Двускосый клин.

3. Круглый клин.

Рис. 3.2. Плоский односкосый клин.

Рис. 3.3. Двускосый клин.

Рис. 3.4. Круглый клин.

4) кривошипный клин в форме эксцентрика или плоского кулачка с рабочим профилем, очерченным по архимедовой спирали;

Рис. 3.5. Кривошипный клин: а – в форме эксцентрика; б) – в форме плоского кулачка.

5) винтовой клин в форме торцевого кулачка. Здесь односкосый клин как бы свернут в цилиндр: основание клина образует опору, а его наклонная плоскость - винтовой профиль кулачка;

6) в самоцентрирующих клиновых механизмах (патроны, оправки) не пользуются системы из трех и более клиньев.

3.3.2.1. Условие самоторможение клина

Рис. 3.6. Условие самоторможение клина.

где: - угол трения.

где: коэффициент трения;

то ; .

Для клина с трением только по наклонной поверхности условие самоторможение:

с трением на двух поверхностях:

Имеем: ; или: ; .

Тогда: условие самоторможение для клина с трением на двух поверхностях:

для клина с трением только на наклонной поверхности:

С трением на двух поверхностях:

.

С трением только на наклонной поверхности:

3.3.3.Эксцентриковые зажимы

Рис. 3.7. Схемы для расчета эксцентриков.

Такие зажимы являются быстродействующими, но развивают меньшую силу, чем винтовые. Обладают свойством самоторможения. Основной недостаток: не могут надежно работать при значительных колебаниях размеров между установочной и зажимаемой поверхностью обрабатываемых деталей.

;

где: (- среднее значение радиуса, проведенного из центра вращения эксцентрика в точку А зажима, мм; (- средний угол подъема эксцентрика в точке зажима; (, (1 – углы трения скольжения в точке А зажима и на оси эксцентрика.

Для расчетов принимают:

При l 2D расчет можно производить по формуле:

.

Условие самоторможения эксцентрика:

Обычно принимают .

Материал: сталь 20Х с цементацией на глубину 0, 8 1, 2 мм и закалкой до HRC 50…60.

3.3.4. Цанги

Цанги представляют собой пружинящие гильзы. Их применяют для установки заготовок по наружным и внутренним цилиндрическим поверхностям.

где: – сила закрепления заготовки; Q – сила сжатия лепестков цанги; - угол трения между цангой и втулкой.

Рис. 3.8. Цанга.

3.3.5. Устройства для зажима деталей типа тел вращения

Кроме цанги для зажима деталей имеющих цилиндрическую поверхность, применяют разжимные оправки, зажимные втулки с гидропластом, оправки и патроны с тарельчатыми пружинами, мембранные патроны и другие.

Консольные и центровые оправки применяют для установки с центральным базовым отверстием втулок, колец, шестерен, обрабатываемых на многорезцовых шлифовальных и других станках.

При обработке партии таких деталей требуется получить высокую концентричность наружных и внутренних поверхностей и заданную перпендикулярность торцов к оси детали.

В зависимости от способа установки и центрирования обрабатываемых деталей консольные и центровые оправки можно подразделить на следующие.виды: 1) жесткие (гладкие) для установки деталей с зазором или натягом; 2) разжимные цанговые; 3) клиновые (плунжерные, шариковые); 4) с тарельчатыми пружинами; 5) самозажимные (кулачковые, роликовые); 6) с центрирующей упругой втулкой.

Рис. 3.9. Конструкции оправок: а — гладкая оправка; б — оправка с разрезной втулкой.

На рис. 3.9, а показана гладкая оправка 2, на цилиндрической части которой установлена обрабатываемая деталь 3. Тяга 6, закрепленная на штоке пневмоцилиндра, при перемещении поршня со штоком влево головкой 5нажимает на быстросменную шайбу 4и зажимает деталь 3на гладкой оправке 2. Оправка конической частью 1 вставляется в конус шпинделя станка. При зажиме обрабатываемой детали на оправке осевая сила Q на штоке механизированного привода вызывает между торцами шайбы 4, уступом оправки и обрабатываемой деталью 3момент от силы трения, больший, чем момент Мрез от силы резания Рz. Зависимость между моментами:

;

откуда сила на штоке механизированного привода:

.

По уточненной формуле:

.

Где: — коэффициент запаса; Рz вертикальная составляющая сила резания, Н (кгс); D — наружный диаметр поверхности обрабатываемой детали, мм; D1 наружный диаметр быстросменной шайбы, мм; d — диаметр цилиндрической установочной части оправки, мм; f= 0, 1 — 0, 15 — коэффициент трения сцепления.

На рис. 3.9, б показана оправка 2с разрезной втулкой 6, на которой устанавливают и зажимают обрабатываемую деталь 3. Конической частью 1оправку 2 вставляют в конус шпинделя станка. Зажим и разжим детали на оправке производят механизированным приводом. При подаче сжатого воздуха в правую полость пневмоцилиндра поршень, шток и тяга 7 движутся влево и головка 5 тяги с шайбой 4 перемещает разрезную втулку 6 по конусу оправки, пока она не зажмет деталь на оправке. Во время подачи сжатого воздуха в левую полость пневмоцилиндра поршень, шток; и тяга перемещаются вправо, головка 5 с шайбой 4отходят от втулки 6 и деталь разжимается.

Рис.3.10. Консольная оправка с тарельчатыми пружинами (а) и тарельчатая пружина (б).

Крутящий момент от вертикальной силы резания Рzдолжен быть меньше момента от сил трения на цилиндрической поверхности разрезной втулки 6 оправки. Осевая сила на штоке механизированного привода (см. рис. 3.9, б).

;

где: — половина угла конуса оправки, град; — угол трения на поверхности контакта оправки с разрезной втулкой, град; f=0, 15—0, 2 — коэффициент трения.

Оправки и патроны с тарельчатыми пружинами применяют для центрирования и зажима по внутренней или наружной цилиндрической поверхности обрабатываемых деталей. На рис. 3.10, а, б соответственно показаны консольная оправка с тарельчатыми пружинами и тарельчатая пружина. Оправка состоит из корпуса 7, упорного кольца 2, пакета тарельчатых пружин 6, нажимной втулки 3 и тяги 1, соединенной со штоком пневмоцилиндра. Оправку применяют для установки и закрепления детали 5 по внутренней цилиндрической поверхности. При перемещении поршня со штоком и тягой 1 влево последняя головкой 4 и втулкой 3 нажимает на тарельчатые пружины 6.Пружины выпрямляются, их наружный диаметр увеличивается, а внутренний уменьшается, обрабатываемая деталь 5 центрируется и зажимается.

Размер установочных поверхностей пружин при сжатии может изменяться в зависимости от их размера на 0, 1 — 0, 4 мм. Следовательно, базовая цилиндрическая поверхность обрабатываемой детали должна иметь точность 2 - 3-го классов.

Тарельчатую пружину с прорезями (рис. 3.10, б) можно рассматривать как совокупность двухзвенных рычажно-шарнирных механизмов двустороннего действия, разжимаемых осевой силой. Определив крутящий момент Мрез от силы резания Рz и выбирая коэффициент запаса К, коэффициент трения f и радиус R установочной поверхности тарельчатой поверхности пружины, получим равенство:

.

Из равенства определим суммарную радиальную силу зажима, действующую на установочной поверхности обрабатываемой детали:

.

Осевая сила на штоке механизированного привода для тарельчатых пружин:

с радиальными прорезями

;

без радиальных прорезей

;

где: — угол наклона тарельчатой пружины при зажиме детали, град; К=1, 5 — 2, 2 — коэффициент запаса; Мрез крутящий момент от силы резания Рz, Н-м (кгс-см); f=0, 1— 0, 12 — коэффициент трения между установочной поверхностью тарельчатых пружин и базовой поверхностью обрабатываемой детали; R — радиус установочной поверхности тарельчатой пружины, мм; Рz — вертикальная составляющая сила резания, Н (кгс); R1 — радиус обработанной поверхности детали, мм.

Патроны и оправки с самоцентрирующими тонкостенными втулками, наполненными гидропластмассой, применяют для установки по наружной или внутренней поверхности деталей, обрабатываемых на токарных и других станках.

На приспособлениях с тонкостенной втулкой обрабатываемые детали наружной или внутренней поверхностью устанавливают на цилиндрическую поверхность втулки. При разжиме втулки гидропластмассой детали центрируются и зажимаются.

Форма и размеры тонкостенной втулки должны обеспечивать достаточную ее деформацию для надежного зажима детали на втулке при обработке детали на станке.

При конструировании патронов и оправок с тонкостенными втулками с гидропластмассой рассчитывают:

1. основные размеры тонкостенных втулок;

2. размеры нажимных винтов и плунжеров у приспособлений с ручным зажимом;

3. размеры плунжеров, диаметр цилиндра и ход поршня для приспособлений с механизированным приводом.

Рис. 3.11. Тонкостенная втулка.

Исходными данными для расчета тонкостенных втулок являются диаметр Dд отверстия или диаметр шейки обрабатываемой детали и длина lд отверстия или шейки обрабатываемой детали.

Для расчета тонкостенной самоцентрирующей втулки (рис. 3.11) примем следующие обозначения: D — диаметр установочной поверхности центрирующей втулки 2, мм; h — толщина тонкостенной части втулки, мм; Т — длина опорных поясков втулки, мм; t — толщина опорных поясков втулки, мм; — наибольшая диаметральная упругая деформация втулки (увеличение или уменьшение диаметра в ее средней части) мм; Smax — максимальный зазор между установочной поверхностью втулки и базовой поверхностью обрабатываемой детали 1 в свободном состоянии, мм; lк — длина контактного участка упругой втулки с установочной поверхностью обрабатываемой детали после разжима втулки, мм; L —длина тонкостенной части втулки, мм; lд — длина обрабатываемой детали, мм; Dд — диаметр базовой поверхности обрабатываемой детали, мм; d — диаметр отверстия опорных поясков втулки, мм; р — давление гидропластмассы, требуемое для деформации тонкостенной втулки, МПа (кгс/см2); r1 радиус закругления втулки, мм; Mрез=Pzr — допустимый крутящий момент, возникающий от силы резания, Н-м (кгс-см); Pz — сила резания, Н (кгс); r —плечо момента силы резания.

На рис. 3.12 показана консольная оправка с тонкостенной втулкой и гидропластмассой. Обрабатываемую деталь 4базовым отверстием устанавливают на наружную поверхность тонкостенной втулки 5. При подаче сжатого воздуха в штоковую полость пневмоцилиндра поршень со штоком перемещается в пневмоцилиндре влево и шток через тягу 6и рычаг 1передвигает плунжер 2, который нажимает на гидропластмассу 3. Гидропластмасса равномерно давит на внутреннюю поверхность втулки 5, втулка разжимается; наружный диаметр втулки увеличивается, и она центрирует и закрепляет обрабатываемую деталь 4.

Рис. 3.12. Консольная оправка с гидропластмассой.

Мембранные патроны применяют для точного центрирования и зажима деталей, обрабатываемых на токарных и шлифовальных станках. В мембранных патронах обрабатываемые детали устанавливают по наружной или внутренней поверхности. Базовые поверхности деталей должны быть обработаны по 2—За-му классам точности. Мембранные патроны обеспечивают точность центрирования деталей 0, 004—0, 007 мм.

Мембраны — это тонкие металлические диски с рожками или без рожков (кольцевые мембраны). В зависимости от воздействия на мембрану штока механизированного привода — тянущего или толкающего действия — мембранные патроны подразделяются на разжимные и зажимные.

В разжимном мембранном рожковом патроне при установке кольцевой детали мембрана с рожками, штоком привода прогибается влево к шпинделю станка. При этом рожки мембраны с зажимающими винтами, установленными на концах рожков, сходятся к оси патрона, и обрабатываемое кольцо устанавливается центральным отверстием в патроне.

При прекращении нажима на мембрану под действием упругих сил она выпрямляется, ее рожки с винтами расходятся от оси патрона и зажимают обрабатываемое кольцо по внутренней поверхности. В зажимном мембранном рожковом патроне при установке кольцевой детали по наружной поверхности мембрана штоком привода прогибается вправо от шпинделя станка. При этом рожки мембраны расходятся от оси патрона и обрабатываемая деталь разжимается. Затем устанавливается следующее кольцо, нажим на мембрану прекращается, она выпрямляется и рожками с винтами зажимает обрабатываемое кольцо. Зажимные мембранные рожковые патроны с механизированным приводом изготовляются по МН 5523—64 и МН 5524—64 и с ручным приводом по МН 5523—64.

Мембранные патроны бывают рожковые и чашечные (кольцевые), их изготовляют из стали 65Г, ЗОХГС с закалкой до твердости HRC 40—50. Основные размеры рожковых и чашечных мембран нормализованы.

На рис. 3.13, а, б показана конструктивная схема мембранно-рожкового патрона 1. На заднем' конце шпинделя станка установлен пневмопривод патрона. При подаче сжатого воздуха в левую полость пневмоцилиндра поршень со штоком и тягой 2 перемещается вправо. При этом тяга 2, нажимая на рожковую мембрану 3, прогибает ее, кулачки (рожки) 4 расходятся, и деталь 5 разжимается (рис. 3.13, б). Во время подачи сжатого воздуха в правую полость пневмоцилиндра его поршень со штоком и тягой 2перемещается влево и отходит от мембраны 3. Мембрана под действием внутренних упругих сил выпрямляется, кулачки 4мембраны сходятся и зажимают по цилиндрической поверхности деталь 5 (рис. 3.13, а).

Рис. 3.13. Схема мембранно-рожкового патрона

Основные данные для расчета патрона (рис. 3.13, а) с рожко-, вой мембраной: момент резания Мрез, стремящийся повернуть обрабатываемую деталь 5 в кулачках 4патрона; диаметр d = 2b базовой наружной поверхности обрабатываемой детали; расстояние l от середины мембраны 3до середины кулачков 4.На рис. 3.13, в дана расчетная схема нагруженной мембраны. Круглая, жестко закрепленная по наружной поверхности мембрана нагружена равномерно распределенным изгибающим моментом МИ, приложенным по концентрической окружности мембраны радиуса b базовой поверхности обрабатываемой детали. Данная схема является результатом наложения двух схем, показанных на рис. 3.13, г, д, причем МИ13.

На рис. 3.13, в принято: а — радиус наружной поверхности мембраны, см (выбирают по конструктивным условиям); h=0, 1 0, 07 — толщина мембраны, см; МИ момент, изгибающий мембрану, Н-м (кгс-мм); — угол разжима кулачков 4мембраны, требуемый для установки и зажима обрабатываемой детали с наименьшим предельным размером, град.

На рис. 3.13, е показан максимальный угол разжима кулачков мембраны:

где: — дополнительный угол разжима кулачка, учитывающий допуск на неточность изготовления установочной поверхности детали; — угол разжима кулачков, учитывающий диаметральный зазор , необходимый для возможности установки деталей в патрон.

Из рис. 3.13, e видно, что угол:

;

где: — допуск на неточность изготовления детали на смежной предшествующей операции; мм.

Число кулачков n мембранного патрона принимают в зависимости от формы и размеров обрабатываемой детали. Коэффициент трения между установочной поверхностью детали и кулачков . Коэффициент запаса . Допуск на размер установочной поверхности детали задается чертежом. Модуль упругости МПа ( кгс/см2).

Имея необходимые данные, рассчитывают мембранный патрон.

1. Радиальная сила на одном кулачке мембранного патрона для передачи крутящего момента Мрез

.

Силы Pз вызывают момент, изгибающий мембрану (см. рис. 3.13, в).

2. При большом количестве кулачков патрона момент Мп можно считать равномерно действующим по окружности мембраны радиуса b и вызывающим ее изгиб:

.

3. Радиусом а наружной поверхности мембраны (из конструктивных соображений) задаются.

4. Отношение т радиуса а мембраны к радиусу b установочной поверхности детали: а/b = т.

5. Моменты М1 и М3 в долях от Мии= 1) находят в зависимости от m= a/b по следующим данным (табл. 3.1):

Таблица 3.1

m=a/b 1, 25 1, 5 1, 75 2, 0 2, 25 2, 5 2, 75 3, 0
M1 0, 785 0, 645 0, 56 0, 51 0, 48 0, 455 0, 44 0, 42
M3 0, 215 0, 355 0, 44 0, 49 0, 52 0, 545 0, 56 0, 58

6. Угол (рад) разжима кулачков при закреплении детали с наименьшим предельным размером:

.

7. Цилиндрическая жесткость мембраны [Н/м (кгс/см)]:

;

где: МПа — модуль упругости ( кгс/см2); =0, 3.

8. Угол наибольшего разжима кулачков (рад):

.

9. Сила на штоке механизированного привода патрона, необходимая для прогиба мембраны и разведения кулачков при разжиме детали, на максимальный угол :

.

При выборе точки приложения и направления зажимного усилия необходимо соблюдать следующее: для обеспечения контакта заготовки с опорным элементом и устранения возможного ее сдвига при закреплении зажимное усилие следует направлять перпендикулярно к поверхности опорного элемента; в целях устранения деформации заготовки при закреплении точку приложения зажимного усилия надо выбирать так, чтобы линия его действия пересекала опорную поверхность установочного элемента.

Количество точек приложения зажимных усилий определяют конкретно к каждому случаю зажима заготовки в зависимости от вида заготовки, метода обработки, направления силы резания. Для уменьшения вибрации и деформации заготовки под действием сил резания следует повышать жесткость системы заготовка – приспособление путем увеличения числа точек зажима заготовки за счет введения вспомогательных опор.

К зажимным элементам относятся винты, эксцентрики, прихваты, тисочные губки, клинья, плунжеры, планки. Они являются промежуточными звеньями в сложных зажимных системах. Форма рабочей поверхности зажимных элеме






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.