Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Возможности применения теории нечетких множеств и интервального анализа для описания различных видов неопределенности






Для реальных сложных систем характерно наличие одновременно разнородной информации:

1. точечных замеров и значений параметров;

2. допустимых интервалов их изменения;

3. статистических законов распределения для отдельных величин;

4. лингвистических критериев и ограничений, полученных от специалистов-экспертов и т.д.

Наличие в сложной многоуровневой иерархической системе управления одновременно различных видов неопределенности делает необходимым использование для принятия решений теории нечетких множеств, которая позволяет адекватно учесть имеющиеся виды неопределенности.

Соответственно и вся информация о режимах функционирования подсистем, областях допустимости и эффективности, целевых функциях, предпочтительности одних режимов работы перед другими, о риске работы на каждом из режимов для подсистем и т.д. должна быть преобразована к единой форме и представлена в виде функций принадлежности. Такой подход позволяет свести воедино всю имеющуюся неоднородную информацию: детерминированную, статистическую, лингвистическую и интервальную.

В целом алгоритмы на базе нечетких множеств хорошо зарекомендовали себя на практике для самого разнообразного круга задач:

1. для создания математической модели многослойного оценивания запасов угля в пластах;

2. применение нечетких уравнений и элементов нечеткой логики для диагностирования сложных систем - пакет программ Thermix-2D для анализа динамики АЭС;

3. при управлении нестационарным процессом движения морских геолого-геофизических комплексов;

4. для оценки показателей качества программных средств;

5. в системах искусственного интеллекта для управления работой технологического оборудования (фирмы " Тексако кемиклз" и " Экссон кемиклз"); Нечетких множеств в стохастических системах. Это применение связано с тем, что для многих систем трудно получить точные значения вероятностных характеристик (например, вероятности отказов компонентов).


 

5. Схема процесса моделирования

Модель представляет собой абстрактное описание системы, уровень детализации которого определяет сам исследователь. Человек принимает решение о том, является ли данный элемент системы существенным, а следовательно, будет ли ой включен в описание системы. Это решение принимается с учетом цели, лежащей в основе разработки модели. От того, насколько хорошо исследователь умеет выделять существенные элементы и взаимосвязи между ними, зависит успех моделирования.

Система рассматривается как состоящая из множества взаимосвязанных элементов, объединенных для выполнения определенной функции. Определение системы во многом субъективно, т. е. оно зависит не только от цели разработки модели, но и от того, кто именно определяет систему.

 
 


Рис.3.1 Процесс построения модели

 

Итак, процесс моделирования начинается с определения цели разработки модели, на основе которой затем устанавливаются границы системы и необходимый уровень детализации моделируемых процессов Выбранный уровень детализации должен позволять абстрагироваться от неточно определенных из-за недостатка информации аспектов функционирования реальной системы. В описание системы, кроме того, должны быть включены критерии эффективности функционирования системы и оцениваемые альтернативные решения, которые могут рассматриваться как часть модели или как ее входы. Оценки же альтернативных решений по заданным критериям эффективности рассматриваются как выходы модели. Обычно оценка альтернатив требует внесения изменений в описание системы и, следовательно, перестройки модели. Поэтому на практике процесс построения модели является итеративным. После того как на основе полученных оценок альтернатив могут быть выработаны рекомендации, можно приступать к внедрению результатов моделирования. При этом в рекомендациях должны быть четко сформулированы как основные решения, так и условия их реализации.

 

 


 

6. Принципы моделирования (преимущества каждого принципа)






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.