Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Принтер 250




принтер | сканер 450

поскольку последнее число равно сумме двух предыдущих, можно сразу же придти к выводу, что в этом сегменте сети нет сайтов, на которых ключевыми словами являются одновременно принтер и сканер:

принтер & сканер 0

диаграмма Эйлера для этого случая показана на рисунке справа:

2) с этого момента все просто: для того, чтобы определить, сколько сайтов удовлетворяют заданному условию

достаточно просто сложить числа, соответствующие запросам принтер & монитор и
сканер & монитор

3) таким образом, правильный ответ: 40 + 50 = 90.

Возможные проблемы: · обратите внимание, что в условии была лишняя информация: мы нигде не использовали количество сайтов в данном сегменте Интернета (1000) и количество сайтов с ключевым словом монитор (450) · не всегда удается «раскрутить» задачу в уме, здесь это несложно благодаря «удачному» условию

Решение (вариант 3, таблицы истинности):

1) для сокращения записи обозначим через C, П, М высказывания «ключевое слово на сайте – сканер» (соответственно принтер, монитор)

2) если рассматривать задачу с точки зрения математической логики, здесь есть три переменных, с помощью которых можно составить всего 8 запросов, выдающих различные результаты

  С П М
?
?
?
?
?
?
?
?
всего

3) составим таблицу истинности, в которую добавим левый столбец и последнюю строку, где будем записывать количество сайтов, удовлетворяющих условиям строки и столбца (см. рисунок справа); например, первая строка соответствует сайтам, на которых нет ни одного из заданных ключевых слов; такая схема непривычна, но она существенно упрощает дело

4) сумма в последней строчке получается в результате сложения всех чисел из тех строк первого столбца, где в данном столбце стоят единицы. Например, сумма в столбце С – складывается из четырех чисел в последних четырех строчках первого столбца. Мы пока не знаем, сколько результатов возвращает каждый из восьми запросов отдельно, поэтому в первом столбце стоят знаки вопроса

5) добавим в таблицу истинности остальные запросы, которые есть в условии, в том числе и тот, который нас интересует:

П | С = принтер | сканер 450

П & М = принтер & монитор 40

C & М = сканер & монитор 50

(П | C) & М = (принтер | сканер) & монитор ?

  С П М П | С П & М C & М (П | C) & М
?      
?      
?      
?      
?      
?      
     
     
всего      

6) проанализируем столбец П | С в этой таблице: его сумма (450) складывается из суммы столбцов С (200) и П (250) – выделены ярким зеленым цветом – плюс последние две строчки (голубой фон), то есть, 450 = 200 + 250 + X, откуда сразу получаем, что X = 0, то есть, последним двум строчкам (запросам) не удовлетворяет ни одного сайта



7) теперь составим таблицы истинности для остальных запросов, отбросив заведомо «нулевые» варианты:

  С П М П | С П & М C & М (П | C) & М
?
?
?
?
всего

из оставшихся шести строк таблицы запросы П & М и С & М затрагивают только по одной строчке, поэтому сразу можем вписать соответствующие числа в первый столбец; в последнем запросе, который нас интересует, присутствуют именно эти две строки, то есть, для получения нужно сложить 40 и 50



8) таким образом, правильный ответ: 40 + 50 = 90.

Решение (вариант 3, через диаграммы и систему уравнений):

1) для сокращения записи обозначим через C, П, М высказывания «ключевое слово на сайте – сканер» (соответственно принтер, монитор) и нарисуем эти области виде диаграммы (кругов Эйлера); интересующему нас запросу (П | C) & M соответствует объединение областей 4, 5 и 6 («зеленая зона» на рисунке)

2) количество сайтов, удовлетворяющих запросу в области i, будем обозначать через Ni

3) составляем уравнения, которые определяют запросы, заданные в условии:

сканер N1 + N2 + N4 + N5 = 200

принтер N2 + N3 + N5 + N6 = 250

принтер | сканер N1 + N2 + N4 + N5 + N3 + N6 = 450

из первого и третьего уравнений сразу следует

200 + N3 + N6 = 450 Þ N3 + N6 = 250

далее из второго уравнения

N2 + N5 + 250 = 250 Þ N2 + N5 = 0

поскольку количество сайтов не может быть отрицательной величиной, N2 = N5 = 0

4) посмотрим, что еще мы знаем (учитываем, что N5 = 0):

принтер & монитор N5 + N6 = 40 Þ N6 = 40

сканер & монитор N4 + N5 = 50 Þ N4 = 50

5) окончательный результат:

(принтер | сканер) & монитор N4 + N5 + N6 = N4 + N6 = 40 + 50 = 90

6) таким образом, правильный ответ 90.

Возможные проблемы: · внимательнее с индексами переменных, очень легко по невнимательности написать N5 вместо N6 и получить совершенно другой результат · этот метод ярко демонстрирует, что в общем случае мы получаем систему уравнения с семью неизвестными (или даже с восемью, если задействована еще и область вне всех кругов); решать такую систему вручную достаточно сложно, поэтому на экзамене всегда будет какое-то условие, сильно упрощающее дело, ищите его

Еще пример задания:

В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

  Запрос Количество страниц (тыс.)
мезозой  
кроманьонец  
неандерталец  
мезозой | кроманьонец  
мезозой | неандерталец  
неандерталец & (мезозой | кроманьонец)  

Сколько страниц (в тысячах) будет найдено по запросу

кроманьонец & (мезозой | неандерталец)

Решение (способ 1, круги Эйлера):

1) обозначим области «мезозой», «кроманьонец» и «неандерталец» буквами М, К и Н; пронумеруем подобласти, получившиеся в результате пересечений кругов (см. рисунок справа)

2) через i обозначим количество сайтов в области с номером i

3) нас интересует результат запроса

кроманьонец & (мезозой | неандерталец)

то есть N­2 + N5 + N6(зеленая область на рисунке)

4) из первых двух запросов следует, что

N1 + N2 + N4 + N5 = 50 (мезозой)

N2 + N3 + N5 + N6 = 60 (кроманьонец)

5) складывая левые и правые части уравнений, получаем

(1) N1 + 2·N2 + N3 + N4 + 2·N5 + N6 = 110

6) в то же время из запроса 4 получаем

(2) N1 + N2 + N3 + N4 + N5 + N6 = 80 (мезозой | кроманьонец)

7) вычитая из уравнения (1) уравнение (2), отдельно левые и правые части, получаем

N2 + N5 = 30 (мезозой & кроманьонец)

вспомним, что наша цель – определить N­2 + N5 + N6, поэтому остается найти N6

8) из запросов 1 и 3 следует, что

N1 + N2 + N4 + N5 = 50 (мезозой)

N4 + N5 + N6 + N7 = 70 (неандерталец)

9) складывая левые и правые части уравнений, получаем

(3) N1 + N2 + 2·N4 + 2·N5 + N6 + N7 = 120

10) в то же время из запроса 5 получаем

(4) N1 + N2 + N4 + N5 + N6 + N7 = 100 (мезозой | неандерталец)

11) вычитая из уравнения (3) уравнение (4), отдельно левые и правые части, получаем

(5) N4 + N5 = 20 (мезозой & неандерталец)

12) теперь проанализируем запрос 6:

неандерталец & (мезозой | кроманьонец)

(6) N4 + N5 + N­6 = 20

13) вычитая из уравнения (6) уравнение (5) получаем N6 = 0, поэтому

N2 + N5 + N6 = N2 + N5 = 30

14) таким образом, ответ – 30.

Решение (способ 2, М.С. Коротков, г. Челябинск, Лицей № 102):

1) пп. 1-3 такие же, как в первом способе;

2) из запросов 1 и 6 следует, что

(1) N4 + N5 + N6 + N7 = 70 (неандерталец)

(2) N4 + N5 + N­6 = 20 неандерталец & (мезозой | кроманьонец)

3) вычитая (2) из (1), сразу получаем, что N7 = 50

4) из запросов 5 и 4 следует, что

(3) N1 + N2 + N4 + N5 + N6 + N7 = 100 (мезозой | неандерталец)

(4) N1 + N2 + N3 + N4 + N5 + N6 = 80 (мезозой | кроманьонец)

5) вычитая (4) из (3), сразу получаем, что N7 - N3 = 20

6) в п. 3 мы уже определили, что N7 = 50, поэтому 50 - N3 = 20, откуда N3 = 30

7) из запроса 2 получаем

N2 + N3 + N5 + N6 = 60 (кроманьонец)

поэтому размер интересующей нас области равен

N2 + N5 + N6 = 60 – N3 = 60 – 30 = 30

8) таким образом, ответ – 30.

Решение (способ 3, круги Эйлера, И.Б. Курбанова, г. Санкт-Петербург, ГОУ СОШ № 594):

1) обозначим: М – мезозой, К – кроманьонец, Н – неандерталец.

2) нас интересует результат запроса (см. диаграмму Эйлера)

K & (M | Н)

3) т.к. по условию М = 50, К = 60, а объединение этих множеств М | К = 80, можно сделать вывод, что область пересечения

M & K = 50 + 60 – 80 = 30;

4) т.к. по условию М = 50, Н = 70, а объединение этих множеств М | Н = 100, можно сделать вывод, что область пересечения

M & Н = 50 + 70 – 100 = 20;

5) заметим, что M & Н = 20 и Н & (М | К) = 20, следовательно множества Н и К не пересекаются (К & Н = 0);

6) перерисуем диаграмму Эйлера так, чтобы множества К и Н не пересекались (см. рисунок справа); из новой схемы видно, что

К & (М | Н) = (К & М) | (К & Н) = К & М = 30

7) ответ: 30


Задачи для тренировки[3]:

Во всех задачах для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – символ &.

1) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.

А) физкультура

Б) физкультура & подтягивания & отжимания

В) физкультура & подтягивания

Г) физкультура | фитнесс

2) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.

А ) волейбол | баскетбол | подача

Б) волейбол | баскетбол | подача | блок

В) волейбол | баскетбол

Г) волейбол & баскетбол & подача

3) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.

A ) чемпионы | (бег & плавание)

Б ) чемпионы & плавание

В ) чемпионы | бег | плавание

Г) чемпионы & Европа & бег & плавание

4) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.

А ) музыка | классика | Моцарт | серенада

Б) музыка | классика

В) музыка | классика | Моцарт

Г) музыка & классика & Моцарт

5) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.

А) реферат | математика | Гаусс

Б) реферат | математика | Гаусс | метод

В) реферат | математика

Г) реферат & математика & Гаусс

6) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу. Ответ запишите в виде последовательности соответствующих букв.

a) Америка | путешественники | Колумб

b) Америка | путешественники | Колумб | открытие

c) Америка | Колумб

d) Америка & путешественники & Колумб

7) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу. Ответ запишите в виде последовательности соответствующих букв.

а ) Информатика & уроки & Excel

b ) Информатика | уроки | Excel | диаграмма

с) Информатика | уроки | Excel

d) Информатика | Excel

8) В таблице приведены запросы к поисковому серверу, условно обозначенные буквами от А до Г. Расположите запросы в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу. Ответ запишите в виде последовательности соответствующих букв.

А ) Гренландия & Климат & Флора & Фауна

Б ) Гренландия & Флора

В ) (Гренландия & Флора) | Фауна

Г) Гренландия & Флора & Фауна

9) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу.

а) спорт | футбол

b) спорт | футбол | Петербург | Зенит

с) спорт | футбол | Петербург

d) спорт & футбол & Петербург & Зенит

10) Каким условием нужно воспользоваться для поиска в сети Интернет информации о цветах, растущих на острове Тайвань или Хонсю

1) цветы & (Тайвань | Хонсю)

2) цветы & Тайвань & Хонсю

3) цветы | Тайвань | Хонсю

4) цветы & (остров | Тайвань | Хонсю)

11) Некоторый сегмент сети Интернет состоит из 1000 сайтов. Поисковый сервер в автоматическом режиме составил таблицу ключевых слов для сайтов этого сегмента. Вот ее фрагмент:

Ключевое слово Количество сайтов, для которых данное слово является ключевым
сомики 250
меченосцы 200
гуппи 500

Сколько сайтов будет найдено по запросу

сомики | меченосцы | гуппи

если по запросусомики & гуппибыло найдено 0 сайтов, по запросу
сомики & меченосцы– 20, а по запросумеченосцы & гуппи– 10.

12) Некоторый сегмент сети Интернет состоит из 1000 сайтов. Поисковый сервер в автоматическом режиме составил таблицу ключевых слов для сайтов этого сегмента. Вот ее фрагмент:

Ключевое слово Количество сайтов, для которых данное слово является ключевым
сомики 250
меченосцы 200
гуппи 500

Сколько сайтов будет найдено по запросу

(сомики & меченосцы) | гуппи

если по запросусомики | гуппибыло найдено 750 сайтов, по запросусомики & меченосцы– 100, а по запросумеченосцы & гуппи– 0.

13) Некоторый сегмент сети Интернет состоит из 1000 сайтов. Поисковый сервер в автоматическом режиме составил таблицу ключевых слов для сайтов этого сегмента. Вот ее фрагмент:

Ключевое слово Количество сайтов, для которых данное слово является ключевым
сканер 200
принтер 250
монитор 450

Сколько сайтов будет найдено по запросу

принтер | сканер | монитор

если по запросупринтер | сканербыло найдено 450 сайтов, по запросупринтер & монитор – 40, а по запросу сканер & монитор– 50.

14) В таблице приведены запросы к поисковому серверу, условно обозначенные буквами от А до Г. Расположите запросы в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу. Ответ запишите в виде последовательности соответствующих букв.

А ) (огурцы & помидоры) & (прополка | поливка)

Б ) огурцы | помидоры

В ) огурцы

Г) огурцы & помидоры

15) В таблице приведены запросы к поисковому серверу, условно обозначенные буквами от А до Г. Расположите запросы в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу. Ответ запишите в виде последовательности соответствующих букв.

А ) экзамен | тестирование

Б ) (физика | химия) & (экзамен | тестирование)

В ) физика & химия & экзамен & тестирование

Г) физика | химия | экзамен | тестирование

16) В таблице приведены запросы к поисковому серверу, условно обозначенные буквами от А до Г. Расположите запросы в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу. Ответ запишите в виде последовательности соответствующих букв.

А ) сомики | меченосцы | содержание

Б ) сомики & содержание

В ) сомики & меченосцы & разведение & содержание

Г) (сомики | меченосцы) & содержание

17) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке возрастанияколичества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1 ) канарейки | щеглы | содержание

2 ) канарейки & содержание

3 ) канарейки & щеглы & содержание

4) разведение & содержание & канарейки & щеглы

18) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке убыванияколичества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1 ) барокко | (классицизм & ампир)

2 ) барокко | классицизм

3 ) барокко | ампир | классицизм

4) классицизм & ампир

19) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке убыванияколичества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1 ) барокко | (классицизм & ампир)

2 ) барокко | классицизм

3 ) (классицизм & ампир) | (барокко & модерн)

4) барокко | ампир | классицизм

20) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке убыванияколичества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1 ) зайцы & кролики

2 ) зайцы & (кролики | лисицы)

3 ) зайцы & кролики & лисицы

4) кролики | лисицы

21) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке возрастанияколичества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1 ) кролики | лисицы

2 ) (зайцы & кролики) | (лисицы & волки)

3 ) зайцы & кролики & лисицы & волки

4) зайцы & кролики

22) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке возрастанияколичества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1 ) шкафы | столы | стулья

2 ) шкафы | (стулья & шкафы)

3 ) шкафы & столы

4) шкафы | стулья

23) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке убыванияколичества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1 ) яблоки | сливы

2 ) сливы | (сливы & груши)

3 ) яблоки | груши | сливы

4) (яблоки | груши) & сливы

24) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

Запрос Количество страниц (тыс.)
фрегат | эсминец 3000
фрегат 2000
эсминец 2500

Сколько страниц (в тысячах) будет найдено по запросу

фрегат & эсминец

25) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

Запрос Количество страниц (тыс.)
фрегат & эсминец 500
фрегат 2000
эсминец 2500

Сколько страниц (в тысячах) будет найдено по запросу

фрегат | эсминец

26) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

Запрос Количество страниц (тыс.)
фрегат & эсминец 500
фрегат | эсминец 4500
эсминец 2500

Сколько страниц (в тысячах) будет найдено по запросу

Фрегат

27) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

Запрос Количество страниц (тыс.)
крейсер | линкор 7000
крейсер 4800
линкор 4500

Сколько страниц (в тысячах) будет найдено по запросу

крейсер & линкор

28) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

Запрос Количество страниц (тыс.)
торты | пироги 12000
торты & пироги 6500
пироги 7700

Сколько страниц (в тысячах) будет найдено по запросу

Торты

29) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

 

Запрос Количество страниц (тыс.)
пирожное | выпечка 14200
пирожное 9700
пирожное & выпечка 5100

Сколько страниц (в тысячах) будет найдено по запросу


mylektsii.ru - Мои Лекции - 2015-2018 год. (0.03 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал