Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Ступенчатое одномодовое волокно




В ступенчатом одномодовом волокне (SF) диаметр светонесущей жилы составляет 8-10 мкм и сравним с длиной световой волны. В таком волокне при достаточно большой длине волны света  >  CF ( CF - длина волны отсечки) распространяется только один луч (одна мода). Одномодовый режим в одномодовом волокне реализуется в окнах прозрачности 1310 и 1550 нм. Распространение только одной моды устраняет межмодовую дисперсию и обеспечивает очень высокую пропускную способность одномодового волокна в этих окнах прозрачности. Наилучший режим распространения с точки зрения дисперсии достигается в окрестности длины волны 1310 нм, когда хроматическая дисперсия обращается в ноль. С точки зрения потерь это не самое лучшее окно прозрачности. В этом окне потери составляют 0, 3-0, 4 дБ/км, в то время как наименьшее затухание 0, 2-0, 25 дБ/км достигается в окне 1550 нм.

Многомодовое градиентное волокно
Широко используются два стандарта многомодового градиентного волокна 62, 5/125 и 50/125 отличающиеся профилем сердцевины, рис. 2.12 а. Соответствующие спектральные потери для типичных волокон показаны на рис. 2.12 б. В стандартном многомодовом градиентном волокне (50/125 или 62, 5/125) диаметр светонесущей жилы 50 и 62, 5 мкм, что на порядок больше длины волны передачи. Это приводит к распространению множества различных типов световых лучей - мод - во всех трех окнах прозрачности. Два окна прозрачности 850 и 1310 нм обычно используют для передачи света по многомодовому волокну. В табл. 2.6 приведены основные характеристики многомодовых градиентных волокон двух основных стандартов 50/125 и 62, 5/125. Отметим, что полоса пропускания на длине волны 1300 нм превосходит соответствующее значение на длине волны 850 нм. Это объясняется следующим образом. Дисперсия, которая определяет полосу пропускания, состоит из межмодовой и хроматической составляющих.
Рис.12. Многомодовые градиентные волокна
а) профили показателей преломления волокон 50/125 и 62, 5/125; б) характерные кривые спектральных потерь мощности

Если межмодовая дисперсия слабо зависит от длины волны - в соотношениях (2-15), (2-16) зависимостью показателя преломления от длины волны можно пренебречь, то хроматическая дисперсия пропорциональна ширине спектра излучения. Коэффициент пропорциональности D() при длинах волн в окрестности 1300 нм ( 0) близок к нулю, в то время как на длине волны 850 нм примерно равен 100 пс/(нм2*км). Специфика использования многомодового волокна такова, что обычно в качестве передатчиков используются светоизлучающие диоды, имеющие уширения спектральной линии излучения благодаря некогерентности источника примерно   ~ 50 нм, в отличии от лазерных диодов с уширением   ~ 2 нм и меньше. Это приводит к тому, что хроматическая дисперсия на длине волны 850 нм начинает играть существенную роль наряду с межмодовой дисперсией. Значительно уменьшить хроматическую дисперсию можно при использовании лазерных передатчиков, имеющих значительно меньшее спектральное уширение. Воспользоваться этим преимуществом лазерных передатчиков можно только при использовании одномодового волокна в окнах прозрачности 1310 нм и 1550 нм, когда полностью отсутствует межмодовая дисперсия и остается только хроматическая дисперсия.


Данная страница нарушает авторские права?





© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.