Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Ситуационная (практическая) задача № 2




 

При измерении веса 25 упаковок сильнодействующего лекарственного препарата были обнаружены следующие отклонения (в гр. ) от указанного на обертке :

–24,34; –14,59; –18,27; –8,94; –15,09; –10,94; 4,47; 3,05; –8,33; –22,98; 1,75;

–32,07; –7,43; –18,63; –12,97; –11,08; –7,44; –1,70; 6,34; –11,08; –11,12; –15,90;

–10,26; –8,07; –6,48.

Необходимо:

§ Определить исследуемый признак и его тип (дискретный или непрерывный).

§ В зависимости от типа признака построить полигон или гистограмму относительных частот.

§ На основе визуального анализа полигона (гистограммы) сформулировать гипотезу о законе распределения признака.

§ Вычислить выборочные характеристики изучаемого признака: среднее, дисперсию, среднее квадратическое (стандартное) отклонение.

§ Используя критерий согласия «хи-квадрат» Пирсона, проверить соответствие выборочных данных выдвинутому в п.3 закону распределения при уровне значимости 0,05.

§ Для генеральной средней и дисперсии построить доверительные интервалы, соответствующие доверительной вероятности 0,95.

§ С надежностью 0,95 проверить гипотезу о равенстве:

а) генеральной средней значению –10;

б) генеральной дисперсии значению 100.

Решение:

1. Тип признака непрерывный, т.к. исходные цифры могут принимать любые дробные значения на определенном промежутке.

Разобьем данные на 5 равных интервалов:

Длина интервала

Интервал

Гистограмма относительных частот

3. На основе анализа гистограммы распределения выдвигаем гипотезу о нормальном законе распределения исследуемого признака.

4. Среднее значение:

Дисперсия:

Среднее квадратическое (стандартное) отклонение:

5. Вводим гипотезы:

Исследуемый признак имеет нормальное распределение:

Исследуемый признак имеет другое распределение:

Условие принятия гипотезы

Вероятность попадания в интервалы:

Интервал
Сумма

, следует гипотезу о нормальном распределении исследуемого признака принимаем, при доверительной вероятности 95%.

 

6. Доверительный интервал для генерального среднего, при доверительной вероятности 95%:

С вероятностью 95% генеральное среднее находится в интервале от до .

Доверительный интервал для генеральной дисперсии, при доверительной вероятности 95%:

С вероятностью 95% генеральная дисперсия находится в интервале от до .



7а. Вводим гипотезы:

Условие принятия гипотезы

Условие принятия гипотезы выполняется , следует с вероятностью 95% генеральное среднее можно считать равным -10.

7б. Вводим гипотезы:

Условие принятия гипотезы

Условие принятия гипотезы выполняется , следует с вероятностью 95% генеральную дисперсию можно считать равной 100.


mylektsii.ru - Мои Лекции - 2015-2018 год. (0.015 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал