Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






СВС- металлургия и закономерности процесса






Исходным сырьем, используемым СВС-металлургией, является смесь оксидов металлов с восстановителями (Al, Mg и т.д.) и неметаллами. Смеси такого состава способны к горению, продуктами которого являются различные тугоплавкие соединения. В результате, в зависимости от параметров эксперимента и состава исходной смеси можно получать слитки боридов, карбидов, силицидов и оксидов металлов, твердых и жаростойких сплавов, композиционных материалов и т.д. [54-59]. Изделия, из перечисленных материалов, и защитные покрытия на деталях машин нашли широкое применение в технике [60-62].

В процессе проведения СВС-металлургии после прохождения волны синтеза образуется высокотемпературный расплав тугоплавких неорганических соединений с заранее заданным химическим составом. По сравнению с другими методами, экономическая целесообразность применения СВС-металлургии объясняется следующими существенными преимуществами:

ü получение уже сформированных изделий;

ü высокое качество полученного продукта;

ü высокая производительность применяемого оборудования, обусловливающая низкую себестоимость синтеза продуктов;

ü простота используемого оборудования.

В настоящее время СВС-металлургию можно рассматривать как одно из полезных направлений используемое в практике СВС. Большие перспективы развития этого направления связаны:

· с созданием новых методик и оборудования;

· с исследованием взаимодействия " СВС" и восстановительной стадий в волне горения;

· с осуществлением управления структурой и составом продуктов горения, используя внутренние и внешние параметры;

· с развитием проведения экспериментальных и теоретических исследований по горению смесей термитного типа, при условии проведения принудительной фильтрации расплава и конвективного движения в расплаве продуктов горения.

К достижениям в технологической области можно отнести получение тугоплавких соединений, создание твердых сплавов для металлообрабатывающих инструментов, массовое производство дешевых и высокоэффективных абразивных материалов [63-64].

Известны такие разновидности СВС-процесса, которые сочетают принцип проведения реакции в режиме горения с механическими и энергетическими воздействиями на процесс и использование техники высоких давлений, криогенного оборудования, глубоковакуумной термообработки.

Продуктами горения смесей окислов металлов с восстановителем и неметаллом являются карбиды, бориды, силициды, нитриды, простые и композиционные окислы, твердые сплавы, керметы.

Получение литых тугоплавких соединений и твердых сплавов можно представить следующей химической схемой [65]:

(26)

 

где I = 1- N1 – исходные оксиды (FeO, CrO3, MoO3, NO3, TiO2),

I = N1 + 1 – N2 - металлы восстановители (Mg, Al),

I = N2 + 1 – N3 – неметаллы (B, B2O3, C, Si, SiO2),

j = 1 – M1 – бориды, карбиды, нитриды, силициды, Cr, Ti, N, Mo, твердые сплавы и т.д,

j = M1 + 1 – M2 – оксиды металлов восстановителей (Al2O3, MgO) и другие конденсированные и газообразные продукты горения.

Технологическая схема включает сушку компонентов, дозирование, смешивание, засыпку в форму, синтез в реакторе, разборку формы и извлечение материала или изделия.

Для высококалорийных смесей оксидов металлов с восстановителями и неметаллами характерно горение во взрывоподобном режиме и с сильным разбросом расплава. Благодаря повышенному давлению газа (аргон, воздух, азот) горение проходит в управляемом стационарном режиме, рисунок 4 [39].

 

1 – CrO3: Al∙ C, 2 – MoO3: Al∙ C, 3 – WO3∙ Al: C, 4 – V2O5: B2O3: Al

 

Рисунок 4 – Влияние начального давления аргона (Р0) на величину потери (η п) вещества при горении исходной смеси [39]

 

Формула определения величины потери (η п) вещества при горении исходной смеси:

 

Η п = [(Мо – Мк) / Мо] ∙ 100%, (27)

 

где Мо и Мк – начальная и конечная масса соответственно.

Варьируя начальную температуру, давление, состав смеси и дисперсность ее реагентов можно изменять скорость горения в несколько раз при условии подавления разброса расплава.

Полнота выхода металлической фазы в слиток управляема, т.к. можно изменять ее от расчетного значения до нуля благодаря разбавлению смеси «холодными составами» и инертными добавками, рисунок 5 [39].

В результате можно получить три класса материалов: разделенные, градиентные (частично разделенные) и керметные (перемешанные). Эти три вида возможностей используются в практике.

В итоге, при синтезе получают три фазы: литой слой, диспергат, газообразные продукты, каждая из которых содержит полный набор исходных элементов, но с различными массовыми долями. Металлическая фаза в своем составе содержит целевые элементы и в качестве примеси – Al. Основа оксидного слоя и диспергата - Al2O3. Если горение проходит в атмосфере аргона, то после охлаждения газовая фаза содержит СО и С2Н2. Масса газа уменьшается лишь в том случае, если происходит рост частиц углерода.

 

1 – WO3: CoO: Al: C, 2 – MoO3: Al: C, 3 – CrO3: Al: C, 4 – V2O5: Al: B2O3

 

Рисунок 5 – Влияние массовой доли окиси алюминия в исходной смеси веществ (α – Al2O3) на полноту выхода металлической фазы в слиток(η В)

 

При анализе шлакового слоя локальным лазерным плазмохимическим методом было выявлено, что целевые элементы в нем содержатся в виде раствора исходного оксида в Al2O3 и мелких металлических корольков [39].






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.