Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Функции нескольких переменных




C. Метод полного перебора (метод сеток).

D. Метод покоординатного спуска.

6. Примеры решения задач в MathCAD.

7. Вопросы и задания.

8. Список рекомендуемых источников.

Функции нескольких переменных

Определение. Переменная z называется функцией переменных х и у, если каждой паре значений х и у в некоторой области их изменения поставлено в соответствие одно значение z. Функциональную зависимость z от х и у записывают в виде: z=f(x,у). Это уравнение определяет некоторую поверхность в пространстве R3.
Геометрическим образом функции z=x2+y2 является параболоид. Пусть z=a, тогда x2+y2=a, т.е. линия пересечения плоскости z= a с поверхностью z=x2+y2 есть окружность x 2+ y 2= a радиуса . Пусть у=0, тогда z=x2 и, следовательно, при пересечении плоскости Oхz с поверхностью получается парабола. Метод сечений дает возможность лучше представить себе геометрический образ данной функции.

 


Определение. Число А называется пределом функции z=f(x,у) в точке М0(х0, у0), если для каждого числа ε>0 найдется такое число β>0, что для всех точек М(х,у), для которых выполняется неравенство |ММ0|<β, будет выполняться неравенство | f(x,у)– A|< ε

Обозначим

.
Определение. Функция z=f(x,у) называется непрерывной в точке М0(х0,у0), если имеет место равенство

.



mylektsii.ru - Мои Лекции - 2015-2018 год. (0.007 сек.)Пожаловаться на материал