Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Числовые множества






 

С дошкольного возраста ребенок оперирует натуральными числами, то производя счет предметов, то пересчитывая множество пальцев на руках. Основным понятием при введении понятия множества натуральных чисел N является отношение «непосредственно следовать за», которое определяется следующими аксиомами Пеано.

Аксиома 1. В множестве N существует элемент, непосредственно не следующий ни за каким элементом этого множества, который называется единицей и обозначается символом 1.

Аксиома 2. Для каждого элемента п множества N, существует единственный элемент (п+1), непосредственно следующий за п.

Аксиома 3. Для каждого элемента п из N существует не более одного элемента (п-1), за которым непосредственно следует п.

Аксиома 4. Любое подмножество Р множества N совпадает с N, если для него выполняются свойства: 1) 1 содержится в Р; 2) из того, что п содержится в Р, следует, что и (п+1) содержится в Р.

На основании аксиом Пеано сформулируем определение множества натуральных чисел.

Определение. Множество N, элементы которого удовлетворяют аксиомам 1-4, т.е. находятся в отношении «непосредственно следовать за», называется множеством натуральных чисел, а его элементы – натуральными числами.

Расширением множества натуральных чисел N является множество целых чисел Z, которое является объединением натуральных чисел, числа нуль и чисел противоположных натуральным числам.

Расширением множества целых чисел является множество рациональных чисел Q, представляющее собой объединение целых и дробных чисел. Множество всех чисел представимых в виде несократимой дроби m/n, где m может быть любым целым числом, (не исключая нуля), т.е. m Î Z, а n – натуральное число, т.е. n Î N, составляют множество рациональных чисел. Любое рациональное число можно записать в виде бесконечной десятичной периодической дроби, и наоборот, любая бесконечная десятичная периодическая дробь представляет собой рациональное число.

Существуют числа, которые нельзя представить в виде несократимой дроби, т.е. не принадлежат множеству рациональных чисел. Такие числа составляют множество иррациональных чисел I, их можно представить в виде бесконечной десятичной непериодической дроби. Например, длина диагонали квадрата со стороной 1 должна выражаться некоторым положительным числом r2 =12+12(по теореме Пифагора), т.е. таким, что r2 =2. Число r не может быть целым, 12 = 1, 2 2 = 4 и т.д. Число r не может быть и дробным: если r = m/n - несократимая дробь, где n¹ 1, то r2=m2/n2 тоже будет несократимой дробью, где n2 ¹ 1; значит, m2/n2 не является целым числом, а потому не может равняться 2. Поэтому длина диагонали квадрата выражается иррациональным числом, оно обозначается . Аналогично, не существует рационального числа, квадрат которого равен 5, 7, 10. Соответствующие иррациональные числа обозначаются , , . Противоположные им числа также иррациональны, они обозначаются - , - , - .

Множество иррациональных чисел бесконечно. Например, число p, выражающее отношение длины окружности к диаметру, нельзя представить в виде обыкновенной дроби – это иррациональное число.

Множество, элементами которого являются рациональные и иррациональные числа называется множеством действительных чисел и обозначается буквой R. Каждому действительному числу соответствует единственная точка координатной прямой. Каждая точка координатной прямой соответствует единственному действительному числу. Множество действительных чисел называют также числовой прямой.

Нами рассмотрен процесс расширения понятия числа от натуральных к действительным, который был связан с потребностями практики и с нуждами самой математики. Необходимость выполнения деления привела от натуральных чисел к понятию дробных положительных чисел; затем операция вычитания привела к понятиям отрицательных чисел и нуля; далее, необходимость извлечения корней из положительных чисел – к понятию иррационального числа. Множество, на котором выполнимы все эти операции, есть множество действительных чисел, однако не все операции выполнимы на данном множестве. Например, нет возможности извлечь корень квадратный из отрицательного числа или решить квадратное уравнение х2 + х + 1 = 0. Значит, есть потребность в расширении множества действительных чисел.

Введем число i, такое, что i2 = - 1. Это число позволит извлекать корни из отрицательных чисел. Итак, расширением множества действительных чисел есть множество комплексных чисел, которое обозначается буквой С. Подробно, с множеством комплексных чисел, мы познакомимся позже.

Будем пользоваться обозначениями:

N - множество натуральных чисел;

Z - множество целых чисел;

Q - множество рациональных чисел,

R - множество действительных чисел

С - множество комплексных чисел.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.