Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Свойства куба




1. У куба все грани — квадраты.

2. a√3 (d² = a² + a² + a², где a — ребро куба, d — диагональ куба).

3. Vкуба = a³.

4. Sбок. куба = 4a²; Sполн. куба = 6a2

Задача 1.Боковое ребро наклонной призмы равно 15 см и наклонено к плоскости основания под углом 30о. Найдите высоту призмы (рис.48)

 


Рис.48

ВО - перпендикуляр в основанию, так что ∆АВО- прямоугольный.

Значит ВС=АВ∙sinВАС=1,5∙sin30o =7,5 (см)

Ответ: 7,5 см.

 

Задача 2. В прямой треугольной призме все ребра равны. Боковая поверхность равна

12 м2. Найти высоту.

Решение:

Так как все ребра равны, то боковые грани являются квадратами. Площадь одной грани равна трети площади боковой поверхности: 12: 3 = 4 (м2). Значит, сторона квадрата равна = 2 (м). Тогда ребро призмы равно высоте и равно 2м.

Ответ: 2 м.

 

Задача 3. Боковая поверхность правильной четырехугольной призмы равна 32 м2, а полная поверхность равна 40 м2. Найти высоту.

Решение:

Так как площадь поверхности S = Sбок + 2Sосн, то площадь поверхности основания равна Sосн = (40 – 32): 2 = 4 (м2).

В основании находится квадрат, так как призма правильная, так что сторона квадрата равна = 2 (м).

Боковая поверхность правильной призмы равна: Sбок = р∙h = 4а∙h, так что

h = S : (4а) = 32: (42) = 4 (м2)

Ответ: 4 м.

 

 

Задача 4.В правильной четырехугольной призме площадь основания равны 144 см2, а высота рана 14см. Определить диагональ этой призмы.

Решение:

Так как призма правильная, то в основании ее лежит квадрат и его площадь равна :S=a2

Тогда a=

Далее, заметим, что правильная четырехугольная призма является прямоугольным параллелепипедом, так что квадрат любой диагонали равен сумме квадратов трех его измерений, так что:

d 2=a2+a2+h2=122+122+142=484, d= 22(см)

Задачи

Цель. Учиться изображать основные многогранники, выполнять чертежи по условиям задач; решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов), использовать при решении стереометрических задач планиметрические факты и методы.

 
 


1. Боковое ребро прямого параллелепипеда равно 5м, стороны основания равны 6м и 8м, одна из диагоналей основания равна 12м. Определить диагонали параллелепипеда.

2. В прямом параллелепипеде стороны основания 3см и 5см, одна из диагоналей основания 4 см. Меньшая диагональ параллелепипеда с плоскостью основания составляет угол в 60о. определить диагонали параллелепипеда.

3. Поверхность куба равна 24 м2. Найти его ребро



4. Определить поверхность прямоугольного параллелепипеда по трем его измерениям: 10 см, 22см, 16 см.

5. В прямом параллелепипеде стороны основания равны 6 м и 8м и образуют угол в 30о; боковое ребро равно 5 м. Определить полную поверхность этого параллелепипеда.

 
 


6. Определить полную поверхность прямой треугольной призмы, если ее высота равна 50 см, а стороны основания 40 см, 13 см, 37 см.

7. В прямой треугольной призме стороны основания равны 25 дм, 29 дм и 36 дм, а полная поверхность содержит 1620 дм2. Определить боковую поверхность призмы.

8. Расстояние между боковыми ребрами наклонной треугольной призмы: 2 см, 3см, 4 см. Боковая поверхность равна 45см2. Найти боковое ребро.

 

Ответы к задачам

1.13 м и 10 м. 2. 8 см и 10 см. 3. 2м. 4. 1464 см2. 5. 188 м2 . 6. 4980 дм2. 7. 9м2


mylektsii.ru - Мои Лекции - 2015-2018 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал