Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






V.по функциональному принципу. 3 страница






 

55. Лейкоциты, строение, количество, виды, функции. Лейкоцитарная формула и ее клиническое значение.

Лейкоциты (белые кровяные тельца) – это клетки крови, содержащие ядро. У одних лейкоцитов цитоплазма содержит гранулы, поэтому их называют гранулоцитами. У других зернистость отсутствует, их относят к агранулоцитам. Выделяют три формы гранулоцитов. Те из них, гранулы которых окрашиваются кислыми красителями (эозином), называют эозинофилами. Лейкоциты, зернистость которых восприимчива к основным красителям – базофилами. Лейкоциты, гранулы которых окрашиваются и кислым, и основными красителями, относят к нейтрофилам. Агранулоциты подразделяются на моноциты и лимфоциты. Все гранулоциты и моноциты образуются в красном костном мозге и называются клетками миелоидного ряда. Лимфоциты также образуются из стволовых клеток костного мозга, но размножаются в лимфатических узлах, миндалинах, аппендиксе, селезенке, тимусе, лимфатических бляшках кишечника. Это клетки лимфоидного ряда. Общей функцией всех лейкоцитов является защита организма от бактериальных и вирусных инфекций, паразитарных инвазий, поддержание тканевого гомеостаза и участие в регенерации тканей. Нейтрофилы находятся в сосудистом русле 6-8 часов, а затем переходят в слизистые оболочки. Они составляют подавляющее большинство гранулоцитов. Основная функция нейтрофилов заключается в уничтожении бактерий и различных токсинов. Базофилы (Б) содержатся в количестве 0-1%. Крупные гранулы базофилов содержат гепарин и гистамин. Эозинофилы (Э) содержатся в количестве 1-5%. Эозинофилы обладают способностью к фагоцитозу, связыванию белковых токсинов и антибактериальной активностью. Моноциты – наиболее крупные клетки крови. Их 2-10%. Способность у макрофагов, т.е. вышедших из кровяного русла моноцитов, к фагоцитозу больше, чем у других лейкоцитов. Лимфоциты составляют 20-40% всех лейкоцитов. Они делятся на Т- и В-лимфоциты. Т-клетки делятся на несколько групп. Т-киллеры уничтожают чужеродные клетки-антигены и бактерии. Т-хелперы участвуют в реакции антиген-антитело. Т-клетки иммунологической памяти запоминают структуру антигена и распознают его. Т-амплификаторы стимулируют иммунные реакции, а Т-супрессоры тормозят образование иммуноглобулинов. В-лимфоциты составляют меньшую часть. Они вырабатывают иммуноглобулины и могут превращаться в клетки памяти. Общее количество лейкоцитов 4000-9000 /мкл крови или 4-9·109 /л. Лейкоцитарную формулу напишу сама.

 

56. Понятие о гемостазе. Сосудисто-тромбоцитарный и коагуляционный гемостаз. Факторы и фазы свертывания крови. Тромбоциты и их роль в гемокоагуляции. Взаимодействие свертывающей и противосвертывающей систем крови. Фибринолиз.

Остановка кровотечения, т.е. гемостаз может осуществляться двумя путями. При повреждении мелких сосудов она происходит за счет первичного или сосудисто-тромбоцитарного гемостаза. Он обусловлен сужением сосудов и закупоркой отверстия склеившимися тромбоцитами. При повреждении этих сосудов происходит прилипание (адгезия) тромбоцитов к краям раны. Из тромбоцитов начинают выделяться АДФ, адреналин и серотонин. Серотонин и адреналин суживают сосуд. Затем АДФ вызывает склеивание тромбоцитов. Затем образуется тромбоцитарный тромб, который уплотняется. За счет первичного гемостаза кровотечение останавливается в течение 1-3 минут. Вторичный гемостаз или гемокоагуляция – это ферментативный процесс образования желеобразного сгустка – тромба. Он происходит в результате перехода растворенного в плазме белка фибриногена в нерастворимый фибрин. Образование фибрина осуществляется в несколько этапов и при участии ряда факторов свертывания крови. В зависимости от местонахождения факторы свертывания делятся на плазменные, тромбоцитарные, тканевые, эритроцитарные и лейкоцитарные. Имеется 12 тромбоцитарных факторов свертывания. Факторы свертывания

I. Фибриноген II. Протромбин III. (Тромбопластин) IV. Ионы Са++

V. Проакцелерин VI Проконвертин VII. Антигемофильный глобулин VIII. фактор Кристмаса

IX фактор Стюарта-Прауэра X. фактор Розенталя XI.фактор Хагемана

XII. Фибриназа. Выделяют три фазы свертывания крови. I. Образование активной протромбиназы. II. Переход протромбина в тромбин. III. Образование фибрина. Фибринолиз – такой же цепной процесс, как и свертывание крови. Он осуществляется ферментной фибринолитической системой. В крови содержится неактивный фермент – плазминоген. Под действием ряда других ферментов он переходит в активную форму – плазмин. Плазмин по составу близок к трипсину. Под влиянием плазмина от фибрина отщепляются белки, которые становятся растворимыми. В последующем они расщепляются пептидазами крови до аминокислот. Тромбоциты, или кровяные пластинки, имеют круглую или слегка овальную форму, диаметр их не превышает 2—3 мкм. У тромбоцита нет ядра, но имеется большое количество гранул. В норме число тромбоцитов у здорового человека составляет 2—4-1011 /л, или 200—400 тыс. в 1 мкл. Основное назначение тромбоцитов — участие в процессе гемостаза.

 

57. Группы крови. Система АВ0. Определение группы крови у человека. Правила переливания крови.

Выявили агглютиноген А и В. На основании их отсутствия или наличия в эритроцитах разделяют кровь на I, II и III и IV группу. эритроциты содержат агглютиногены А и В, а плазма крови – агглютинины альфа и бета. В крови никогда одновременно не присутствуют агглютиноген А и агглютинин альфа, а также агглютиноген В и агглютинин бета. Группы крови системы АВ0 обозначаются римскими цифрами и дублирующим названием антигена: I(0) – на эритроците агглютиногенов нет, в плазме агглютинины альфа и бета; II(А, бета) – агглютиноген А, агглютинин бета; III(В, альфа) – агглютиноген В, агглютинин альфа; IV(AB) – в эритроцитах агглютиногены А и В, агглютининов в плазме нет. Для определения групповой принадлежности, каплю исследуемой крови смешивают на предметном стекле с каплей стандартных сывороток I, II и III групп. Таким методом определяются антигеннные свойства эритроцитов. Если ни в одной из сывороток не произошла агглютинация, следовательно в эритроцитах агглютиногенов нет. Это кровь I группы. Когда агглютинация наблюдается с сыворотками I и III групп, значит эритроциты исследуемой крови содержат агглютиноген А. Т.е. это кровь II группы. Агглютинация эритроцитов с сыворотками I и II групп говорит о том, что в них имеется агглютиноген В и эта кровь III группы. Если во всех сыворотках наблюдается агглютинация, значит эритроциты содержат оба антигена А и В. Т.е. кровь IV группы. При переливании надо обязательно учитывать совместимость групп крови. При этом важно, чтобы в результате переливания крови эритроциты донора не склеивались кровью реципиента. Кровь людей I группы можно переливать всем людям, поэтому людей с I группой крови называют универсальными донорами. Кровь людей II группы можно переливать людям, имеющим II и IV группу крови, кровь людей III группы - людям с III и IV группой крови. если у реципиента I группа крови, то ему можно переливать кровь только I группы, во всех остальных случаях произойдет агглютинация. Людей же с IV группой крови называют универсальными реципиентами, так как им можно переливать кровь всех четырех групп, зато их кровь можно переливать только людям с IV группой крови.

58. Резус-фактор. Учет резус-принадлежности крови в клинике. Резус-конфликт между матерью и плодом.

В 1940 году К.Ландштейнер и И.Винер обнаружили в эритроцитах еще один агглютиноген. В отличие от антигенной системы АВ0, где к агглютиногенам А и В имеются соответствующие агглютинины, агглютиниов к резус-антигену в крови нет. Они вырабатываются в том случае, если резус-положительную кровь (содержащую резус-фактор) перелить реципиенту с резус-отрицательной кровью. При первом переливании резус-несовместимой крови никакой трансфузионной реакции не будет. Существует 6 разновидностей резус-агглютиногенов: С, D, Е, с, d, e. Наиболее выраженные антигенные свойства у резус-агглютиногена D. Именно им определяется резус-принадлежность крови. Резус-фактор крови имеет большое значение в акушерской практике, т.к. эритроциты плода могут попадать в кровяное русло матери. Если плод имеет резус-положительную кровь, а мать резус-отрицательную, то попавшие в ее организм с эритроцитами плода резус-антигены, вызовут образование резус-агглютининов. Титр резус-агглютининов нарастает медленно, поэтому при первой беременности особых осложнений не возникает. Если при повторной беременности плод опять наследует резус-положительную кровь, то поступающие через плаценту резус-агглютинины матери вызовут агглютинацию и гемолиз эритроцитов плода. В легких случаях возникает анемия, гемолитическая желтуха новорожденных. В тяжелых – эритробластоз плода и мертворожденность. Это явление называется резус-конфликтом. С целью его профилактики сразу после первых подобных родов вводят антирезус-глобулин. Он разрушает резус-положительные эритроциты, попавшие в кровь матери.

59. Дыхание, его основные этапы. Механизмы внешнего дыхания. Биомеханика вдоха и выдоха.

Дыханием называется комплекс физиологических процессов, обеспечивающих обмен кислорода и углекислого газа между клетками организма внешней средой. Оно включает следующие этапы: 1. внешнее дыхание или вентиляция. Это обмен дыхательных газов между атмосферным воздухом и альвеолами; 2. диффузия газов в легких, т.е. их обмен между воздухом альвеол и кровью; 3. транспорт газов кровью; 4. диффузия газов в тканях. Обмен газов между кровью капилляров и внутриклеточной жидкостью; 5. клеточное дыхание. Поглощение кислорода и образование углекислого газа в клетках. Внешнее дыхание осуществляется в результате ритмических движений трудной клетки. Дыхательный цикл состоит из фаз вдоха и выдоха, между которыми отсутствует пауза. В покое у взрослого человека частота дыхательных движений 16-20 в минуту. При вдохе, который происходит при помощи дыхательных мышц (диафрагма, межрёберные мышцы и другие), воздух из атмосферы попадает в дыхательные пути. По мере продвижения атмосферного воздуха через дыхательные пути (носовая или ротовая полость, гортань, трахея, главные бронхи, бронхиолы), он очищается и согревается. Воздух (кислород) дойдя до уровня легочных альвеол, подвергается диффузии (проникновение), через их стенку, базальную мембрану, стенку капилляров (контактирующего с альвеолой). Кислород, достигший кровеносного русла, прикрепляется к красным клеткам крови (эритроцитам) и транспортируется к тканям, для питания и жизнедеятельности. В обмен на кислород, из крови в альвеолы, поступает углекислый газ (от тканей). Таким образом, дышат клетки и ткани организма человека. Вдох - это активный процесс. При спокойном вдохе сокращаются наружные межреберные и межхрящевые мышцы. Они приподнимают ребра, а грудина при этом отодвигается вперед. Это ведет к увеличению сагиттального и фронтального размеров грудной полости. Одновременно сокращаются мышцы диафрагмы,. ее купол опускается, и органы брюшной полости сдвигаются вниз, в стороны и вперед. За счет этого грудная полость увеличивается и в вертикальном направлении. После окончания вдоха дыхательные мышцы расслабляются - начинается выдох. Спокойньй выдох - пассивный процесс. Во время него происходит возвращение грудной клетки в исходное состояние под действием ее собственного веса, натянутого связочного аппарата и давления на диафрагму органов брюшной полости. В акт вдоха и выдоха вовлекаются вспомогательные мышцы. Они способствуют дополнительному поднятию ребер. При форсированном выдохе сокращаются внутренние межреберные мышцы, которые усиливают опускание ребер. Различают грудной и брюшной тип дыхания. При первом дыхание в основном осуществляется за счет межреберных мышц, при втором - за счет мышц диафрагмы.

 

60. Современные представления о структуре и локализации дыхательного центра. Автоматия дыхательного центра.

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма обусловлены наличием дыхательного центра, расположенного в продолговатом мозге. Дыхательным центром называется совокупность нейронов, обеспечивающих деятельность аппарата дыхания и его приспособление к изменяющимся условиям внешней и внутренней среды. дыхательный центр находится в продолговатом мозге на две IV желудочка в области ретикулярной формации. Дыхательный центр - это парное, симметрично расположенное образование, в состав которого входят вдыхательная и выдыхательная части. Дыхательный центр посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III-IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах грудных сегментов спинного мозга (III-XII).

Дыхательный центр обладает автоматией. В нем автоматически возникает ритмическое возбуждение с частотой 14 - 16 раз в минуту вследствие обменных процессов в самих нейронах, которые очень чувствительны к недостатку кислорода. Поскольку дыхательная мускулатура образована поперечно-полосатой мышечной тканью, человек способен произвольно изменять вентиляцию легких. Это возможно потому, что деятельность дыхательного центра продолговатого мозга находится под контролем коры больших полушарий.

В стенке легких имеются механорецепторы, которые возбуждаются при достижении легкими определенной степени растяжения при вдохе. От этих рецепторов поступают импульсы в дыхательный центр, взывая расслабление дыхательных мышц. Таким образом, в дыхательном центре ритмично возникает возбуждение и торможение.

61. Газообмен в легких и тканях. Основные закономерности перехода газов через мембрану. Парциальное давление и напряжение газов.

Вдыхаемый человеком воздух и выдыхаемый сильно различаются по составу. В атмосферном воздухе содержание кислорода доходит до 21%, углекислого газа — 0, 03—0, 04%. В выдыхаемом воздухе количество кислорода снижается до 16%, зато углекислого газа становится больше — 4—4.5%. Все альвеолы окутаны кровеносными капиллярами, в которые по малому кругу кровообращения поступает венозная кровь из сердца. Стенки альвеол и капилляров очень тонкие. Кровь, которая попадает в легкие, бедна кислородом и насыщена углекислым газом. Воздух в легочных альвеолах, наоборот, богат кислородом, а углекислого газа в нем значительно меньше. Поэтому в соответствии с законами осмоса и диффузии кислород из легочных альвеол устремляется в кровь, где соединяется с гемоглобином эритроцитов. Кровь приобретает алую окраску. Углекислый газ из крови, где он содержится в избытке, проникает в легочные альвеолы. Из венозной крови в легочные альвеолы выделяется также вода, которая в виде пара при выдохе удаляется из легких.

Газообмен в тканях. В органах нашего тела постоянно происходят окислительные процессы, на которые расходуется кислород. Поэтому концентрация кислорода в артериальной крови, которая поступает в ткани по сосудам большого круга кровообращения, больше, чем в тканевой жидкости. В результате кислород свободно переходит из крови в тканевую жидкость и в ткани. Углекислый газ, который образуется в ходе многочисленных химических превращений, наоборот, переходит из тканей в тканевую жидкость, а из нее в кровь. Таким образом кровь насыщается углекислым газом. В капиллярах тканей кислород из артериальной крови диффундирует через их стенки и мембраны клеток внутрь клеток и во внеклеточное вещество благодаря разности давления в 100 мм рт. ст. и больше, так как в результате обмена веществ давление кислорода в тканях доходит до нуля. А давление углекислого газа в тканях в результате обмена веществ повышается до 60—70 мм рт. ст. Поэтому углекислый газ диффундирует через мембраны клеток и стенки капилляров в венозную кровь, где его давление равно 47 мм рт. ст. Диффузия газов через альвеолярную мембрану происходит между альвеолярным воздухом и венозной, а также артериальной кровью легочных капилляров.

 

 

62. Транспорт газов кровью. Кривая диссоциации оксигемоглобина, ее характеристика. Кислородная емкость крови.

В организме кислород и углекислый газ транспортируются кровью. Кислород, поступающий из альвеолярного воздуха в кровь, связывается с гемоглобином эритроцитов, образуя так называемый оксигемоглобин, и в таком виде доставляется к тканям. В тканевых капиллярах кислород отщепляется и переходит в ткани, где включается в окислительные процессы. Свободный гемоглобин связывает водород и превращается в восстановленный гемоглобин. Углекислый газ, образующийся в тканях, переходит в кровь и поступает в эритроциты. Затем часть углекислого газа соединяется с восстановленным гемоглобином, образуя карбогемоглобин, и в таком виде углекислый газ и доставляется к легким. В легочных капиллярах бикарбонаты при помощи специального фермента карбоангидразы распадаются и выделяется углекислый газ. Отщепляется углекислый газ и от гемоглобина. Углекислый газ переходит в альвеолярный воздух и с выдыхаемым воздухом удаляется во внешнюю среду

Кислородная емкость крови - максимальное количество кислорода, обратимо связанное кровью; выражается в объемных процентах; зависит от концентрации в крови гемоглобина. Кислородная емкость крови человека ок. 18-20%.

В исходной ее точке, когда РаО2 гемоглобин не содержит кислорода и SaО2 также равняется нулю. По мере повышения Ра02 гемоглобин начинает быстро насыщаться кислородом, превращаясь в оксигемоглобин: небольшого увеличения напряжения кислорода оказывается достаточно для существенного прироста содержания НЬО2. При 40 мм рт. ст. содержание НЬО2 достигает уже 75 %. Затем наклон кривой становится все более и более пологим. На этом участке кривой гемоглобин уже менее охотно присоединяет к себе кислород, и для насыщения оставшихся 25 % НЬ требуется поднять Ра02 с 40 до 150 мм рт. ст. Впрочем, в естественных условиях гемоглобин артериальной Крови никогда не насыщается кислородом полностью. Нормальная величина P50 равна 27 мм рт. ст. Ее уменьшение соответствует сдвигу кривой влево, а увеличение - сдвигу вправо.

63. Рефлекторно-гуморальные механизмы регуляции дыхания. Механизм первого вдоха новорожденного.

Гуморальные механизмы. Специфическим регулятором активности нейронов дыхательного центра является углекислый газ, который действует на дыхательные нейроны непосредственно и опосредованно. В ретикулярной формации продолговатого мозга, вблизи дыхательного центра, а также в области сонных синусов и дуги аорты обнаружены хеморецепторы, чувствительные к углекислому газу. При увеличении напряжения углекислого газа в крови хеморецепторы возбуждаются, и нервные импульсы поступают к инспираторным нейронам, что приводит к повышению их активности. Углекислый газ повышает возбудимость нейронов коры головного мозга. Избыточное содержание углекислого газа и недостаток кислорода в крови усиливают активность дыхательного центра, что обусловливает возникновение частых и глубоких дыхательных движений –гиперпноэ. Еще большее нарастание количества углекислого газа в крови приводит к нарушению ритма дыхания и появлению одышки – диспноэ. Понижение концентрации углекислого газа и избыток кислорода в крови угнетают активность дыхательного центра. дыхание становится поверхностным, редким и может наступить его остановка – апноэ. Механизм первого вдоха новорожденного. В организме матери газообмен плода происходит через пупочные сосуды. После рождения ребенка и отделения плаценты указанная связь нарушается. Метаболические процессы в организме новорожденного приводят к образованию и накоплению углекислого газа, который, так же как и недостаток кислорода, гуморально возбуждает дыхательный центр.

Рефлекторные механизмы. Различают постоянные и непостоянные рефлекторные влияния на функциональное состояние дыхательного центра. Постоянные рефлекторные влияния возникают в результате раздражения рецепторов альвеол, корня легкого и плевры, хеморецепторов дуги аорты и сонных синусов.

64. Дыхание в условиях пониженного и повышенного барометрического давления.

Барометрическое давление воздуха при спуске под воду на каждые 10, 4 м глубины увеличивается на 1 атм. Частота дыхания при этом уменьшается на 2-4 в 1 мин. Вдох становится легче и короче, выдох затруднен и удлинен. Газообмен не изменяется или немного повышен. При повышенном давлении воздуха количество эритроцитов в крови уменьшается, что связано с их накоплением в кровяных депо. Чем дольше человек находится в условиях повышенного давления и чем оно выше, тем больше азота растворяется в его крови. При быстром переходе от повышенного давления к нормальному возникает опасность «кессонной болезни», которая выражается в том, что начинается выделение азота из тканей и крови. Пузырьки выделяющегося азота могут закупорить мелкие кровеносные сосуды. При закупорке кровеносных сосудов мозга наступают параличи и смерть. Безопасность подъема в условия нормального давления обеспечивается его постепенностью. Подъем с остановками и вдыхание O2, ускоряющее выделение азота из организма, полностью устраняют опасность «кессонной болезни». При дыхании кислородом в маске при повышенном давлении выдох становится активным, а вдох — пассивным, что приводит к перестройке нервной регуляции дыхания. Частота дыхания изменяется мало, а глубина его возрастает значительно. Легочная вентиляция увеличивается более чем в 2-3 раза. В результате гипервентиляции легких происходит избыточное удаление CO2 и давление СO2 в альвеолярном воздухе падает с 5320 Па до 3325 Па и ниже, что создает угрозу гипокапнии — падения содержания углекислоты в крови. В грудной полости создается положительное давление вместо отрицательного, что нарушает кровообращение в большом и малом кругах. Повышенное венозное давление компенсирует избыток давление в легких. Снижение барометрического давления ведет к уменьшению парциального напряжения кислорода во всех звеньях кислородтранспортной системы организма, хотя усиленная легочная вентиляция и другие физиологические механизмы препятствуют снижению содержания кислорода в крови и других тканях тела.

 

65. Кровообращение. Основы гемодинамики. Факторы, обеспечивающие поступательное движение крови.

Кровообращение это движение крови по сосудам, обеспечивающее обмен веществ между всеми тканями организма и внешней средой. Система органов кровообращения включает сердце и кровеносные сосуды. Циркуляция крови в организме человека по замкнутой сердечно-сосудистой системе обеспечивается ритмическими сокращениями сердца — ее центрального органа. Сосуды, по которым кровь от сердца разносится к тканям и органам, называют артериями, а те, по которым кровь доставляется к сердцу, — венами.

 

Гемодинамика – раздел физиологии кровообращения, использующий законы гидродинамики (физические явления движения жидкости в замкнутых сосудах) для исследования причин, условий и механизмов движения крови в сердечно-сосудистой системе. Гемодинамика определяется двумя силами: давлением, которое оказывает влияние на жидкость, и сопротивлением, которое она испытывает при трении о стенки сосудов и вихревых движениях. Основными параметрами, характеризующими системную гемодинамику, являются: системное артериальное давление, общее периферическое сопротивление сосудов, сердечный выброс, работа сердца, венозный возврат крови к сердцу, центральное венозное давление, объем циркулирующей крови. Cистемное артериальное давление. Внутрисосудистое давление крови является одним из основных параметров, по которому судят о функционировании сердечно-сосудистой системы. Артериальное давление есть интегральная величина, составляющими и определяющими которой являются объемная скорость кровотока (Q) и сопротивление (R) сосудов. Общее периферическое сопротивление сосудов - понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Под сердечным выбросом понимают количество крови, выбрасываемой сердцем в сосуды в единицу времени.

Минутный объем кровообращения характеризует общее количество крови, перекачиваемое правым и левым отделом сердца в течение одной минуты в сердечно-сосудистой системе. Сердечный индекс — это величина минутного объема кровообращения, деленная на площадь поверхности тела в м. Центральное венозное давление — давление в устье полых вен — составляет около 0 мм рт. ст. В легочной артерии кровяное давление равно 18—25 мм рт. ст., в легочной вене — 3— 4 мм рт. ст. и в левом предсердии — 2—3 мм рт. ст.

Объем циркулирующей крови (ОЦК) представляет собой гемодинамический показатель, который указывает на суммарный объём жидкой крови в функционирующих кровеносных сосудах.

Движение крови по артериям обусловлено следующими факторами:

1. Работой сердца, обеспечивающего восполнение энергозатрат системы кровообращения.

2. Упругостью стенок эластических сосудов.

3. Разность давлений в начале и конце сосудистого русла. Она возникает в результате затраты энергии на преодоление сопротивления току крови.

 

Стенки вен более тонкие и растяжимые, чем у артерий. Венозный кровоток обеспечивают следующие факторы:

1. Разность давлений в начале и конце венозного русла.

2. Сокращения скелетных мышц при движении, в результате которых кровь выталкивается из периферических вен к правому предсердию.

3. Присасывающее действие грудной клетки. На вдохе давление в ней становится отрицательным, что способствует венозному кровотоку.

4. Присасывающее действие правого предсердия в период его диастолы. Расширение его полости приводит к появлению отрицательного давления в нем.

5. Сокращения гладких мышц вен.

66. Автоматия сердца. Анатомический субстрат и природа автоматии. Проводящая система сердца. Градиент автоматии. Ведущая роль синусового узла в автоматии.

Сердечной мышце свойственны возбудимость, проводимость, сократимость и автоматия. Особое свойство – автоматия – это способность сердца к самопроизвольным сокращениям, без внешних раздражителей. Причиной, вызывающей автоматию, являются изменения обмена веществ, происходящие в самом органе.

Наибольшей способностью к автоматии обладает водитель ритма нормального сердца - синоатриальный узел. Автоматия обнаружена в волокнах, близких по структуре к волокнам синоатриального узла, расположенных вблизи него в предсердиях. Эти волокна обладают несколько меньшей способностью к автоматии, чем клетки синоатриального узла. Их называют скрытыми водителями ритма. Автоматия свойственна также атриовентрикулярному узлу. Синоатриальный узел называют центром автоматии первого порядка, атриовентрикулярный узел — центром автоматии второго порядка. Анатомическим субстратом автоматии являются мышечные клетки в проводящей системе сердца. Для выяснения природы автоматии проводились различные исследования, в результате которых была установлена характерная особенность пейсмекерных клеток. Эта особенность состояла в том, что в промежутке между двумя систолами (в диастолу), в автоматически возбуждающейся пейсмекерной клетке происходило постепенное уменьшение мембранного потенциала (разности потенциалов между протоплазмой и внешней поверхностью клетки). Для того, чтобы в клетке вновь возникло возбуждение, мембранный потенциал должен был уменьшиться на 20-30 мВ. Чем быстрее во время диастолы достигалось такое уменьшение мембранного потенциала, тем чаще возникало возбуждение клетки-водителя ритма, и тем чаще происходило сокращение сердца. В проводящей системе сердца выделяют узлы и пути: 1. синоатриальный узел. Он расположен в устье полых вен, т.е. в венозных синусах; 2. межузловые и межпредсердные проводящие пути. Проходят по миокарду предсердий и межпредсердной перегородке; 3. атриовентрикулярный узел. Находится в нижней части межпредсердной перегородки под эндокардом правого предсердия; 4. пучок Гиса. Идет от атриовентрикулярного узла по верхней части межжелудочковой перегородки. Затем делится на две ножки – правую и левую. Они образуют ветви в миокарде желудочков; 5. волокна Пуркине. Это концевые разветвления ветвей ножек пучка Гиса. Образуют контакты с клетками сократительного миокарда желудочков.

Чем дальше центр автоматии сердца расположен от его венозного конца и ближе к артериальному, тем меньше его способность к автоматии- принцип убывающего градиента автоматии.

 

 

67. Изменение возбудимости сердечной мышцы в процессе возбуждения (соотношение фаз, возбудимости, возбуждения и мышечного сокращения). Особенности рефрактерного периода. Экстрасистола.

В связи с тем, что сердечная мышца является функциональным синцитием, сердце отвечает на раздражение по закону " все или ничего". При исследовании возбудимости сердца в различные фазы сердечного цикла было установлено, что если нанести раздражение любой силы в период систолы, то его сокращения не возникает. Следовательно во время систолы сердце находится в фазе абсолютной рефрактерности. В период диастолы на пороговые раздражения сердце не реагирует. При нанесении сверхпорогового раздражения возникает его сокращение. Т.е. во время диастолы оно находится в фазе относительной рефрактерности. В начале общей паузы сердце находится в фазе экзальтации. При сопоставлении фаз потенциала действия и возбудимости установлено, что фаза абсолютной рефрактерности совпадает с фазами деполяризации, быстрой начальной и замедленной реполяризации. Фазе относительной рефрактерности соответствует фаза быстрой конечной реполяризации. Продолжительность фазы абсолютной рефрактерности 0, 25-0, 3 сек, а относительной 0, 03 сек. Благодаря большой длительности рефрактерных фаз сердце может сокращаться только в режиме одиночных сокращений.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.