Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод вариации постоянных для решения неоднородных дифференциальных уравнений высших порядков.






Данные уравнения имеют вид

где a1, a2,..., an − действительные или комплексные числа, а правая часть f(x) является непрерывной функцией на некотором отрезке [a, b].

Используя линейный дифференциальный оператор L(D), равный

неоднородное дифференциальное уравнение можно записать в виде

Общее решение y(x) неоднородного уравнения представляется в виде суммы общего решения y0(x) соответствующего однородного уравнения и частного решения y1(x) неоднородного уравнения:

При произвольной правой части f(x) для поиска общего решения неоднородного уравнения используется метод вариации постоянных. В случае, если правая часть представляет собой произведение многочлена и экспоненциальной функции, частное решение удобнее искать методом неопределенных коэффициентов.

Метод вариации постоянных

Предположим, что общее решение однородного дифференциального уравнения n-го порядка известно и представляется формулой

Метод вариации постоянных (или метод Лагранжа) заключается в том, что вместо постоянных чисел C1, C2,..., Cn мы рассматриваем функции C1(x), C2(x),..., Cn(x). Эти функции подбираются таким образом, чтобы решение

удовлетворяло исходному неоднородному уравнению.

Производные n неизвестных функций C1(x), C2(x),..., Cn(x) определяются из системы n уравнений:

Определителем этой системы является вронскиан функций Y1, Y2,..., Yn, образующих фундаментальную систему решений. В силу линейной независимости этих функций определитель не равен нулю и данная система однозначно разрешима. Окончательные выражения для функций C1(x), C2(x),..., Cn(x) находятся в результате интегрирования.

Найти общее решение дифференциального уравнения y''' + 3y'' − 10y' = x − 3.


Решение.

Сначала найдем общее решение однородного уравнения

Вычислим корни характеристического уравнения:

Следовательно,

Общее решение однородного уравнения имеет вид:

где C1, C2, C3 − произвольные числа.

В правой части уравнения содержится лишь многочлен. Однако, если учесть, что exp(0) = 1, то видно, что на самом деле мы имеем резонансный случай (в замаскированном виде), поскольку один из корней характеристического уравнения также равен нулю: λ 1 = 0. Поэтому частное решение будем искать в виде

Подставляем производные

в неоднородное уравнение и определяем коэффициенты A, B:

Частное решение y1 записывается как

Итак, общее решение неоднородного дифференциального уравнения выражается формулой

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.