Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Теорема 1.2 (Кронекера-Капелли)




Для того чтобы система (1.11) была совместной, необходимо и достаточно, чтобы rang A = rang .

Доказательство.При помощи прямого хода метода Гаусса, приведем систему (1.11) к виду (1.14).

Необходимость.Если система (1.11), совместна, то и система (1.14) тоже совместна, тогда

(если это не так, например, , то (r + 1)-е уравнение не имеет решений, т.е. система несовместна, что противоречит условию). Откуда следует, что в трапециевидных матрицах, эквивалентных матрице системы и расширенной матрице (первая получается из второй удалением последнего столбца), содержится одинаковое число ненулевых строк, значит rang A = rang .

Достаточность.Если rang A = rang , то (если это не так, например , то у матрицы, эквивалентной матрице , будет хотя бы на одну ненулевую строку больше, чем в матрице, эквивалентной матрице А, т.е. rang A < rang , что противоречит условию). Отбросим последние m r уравнений в системе (1.14), получим систему r уравнений, которая будет эквивалентна системе (1.14), а значит и системе (1.11) (так как последние уравнения превращаются в тождества 0 = 0).

Назовем неизвестные у1, y2, ..., уr базисными, а уr+1, уr+2 ,…, уn свободными и перенесем слагаемые, содержащие свободные неизвестные, в правую часть уравнений. Получим систему относительно базисных неизвестных:

, (1.15)

которая эквивалентна (1.11), и для каждого набора значений свободных неизвестных yr+1 = t1, yr+2 = t2, …, yn = tn–r по теореме 1.1 имеет единственное решение.


mylektsii.ru - Мои Лекции - 2015-2018 год. (0.007 сек.)Пожаловаться на материал