Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






У растений






Аналогичный процесс у растений называется апомиксис.

9. Предмет, задачи и методы генетики. Этапы развития генетики. Роль отечественных уче­ных (П.И. Вавилов, Н.К. Кольцов, А.С. Серебровский, С.С. Четвериков, С.Н. Давиденков, П.И. Тимофеев-Ресовский и др.) в развитии генетики.

Генетика —- наука о наследственности и изменчивости живых организмов и методах управления ими. В ее основу легли закономерности наследственности, установленные выдающимся чешским ученым Грегором Менделем (1822—1884) при скрещивании различных сортов гороха.

Наследственностьэто неотъемлемое свойство всех живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития. Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма. Благодаря наследственности некоторые виды (например, кистеперая рыба латимерия, жившая в девонском периоде) оставались почти неизменными на протяжении сотен миллионов лет, воспроизводя за это время огромное количество поколений.

В то же время в природе существуют различия между особями как разных видов, так и одного и того же вида, сорта, породы и т. д. Это свидетельствует о том, что наследственность неразрывно связана с изменчивостью.

Изменчивостьспособность организмов в процессе онтогенеза приобретать новые признаки и терять старые. Изменчивость выражается в том, что в любом поколении отдельные

особи чем-то отличаются и друг от друга, и от своих родителей. Причиной этого является то, что признаки и свойства любого организма есть результат взаимодействия двух факторов: наследственной информации, полученной от родителей, и конкретных условий внешней среды, в которых шло индивидуальное развитие каждой особи. Поскольку условия среды никогда не бывают одинаковыми даже для особей одного вида или сорта (породы), становится понятным, почему организмы, имеющие одинаковые генотипы, часто заметно отличаются друг от друга по фенотипу, т. е. по внешним признакам.

Таким образом, наследственность, будучи консервативной, обеспечивает сохранение признаков и свойств организмов на протяжении многих поколений, а изменчивость обусловливает формирование новых признаков в результате изменения генетической информации или условий внешней среды.

Задачи генетики вытекают из установленных общих закономерностей наследственности и изменчивости. К этим задачам относятся исследования: 1) механизмов хранения и передачи генетической информации от родительских форм к дочерним; 2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды; 3) типов, причин и механизмов изменчивости всех живых существ; 4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.

Генетика является также основой для решения ряда важнейших практических задач. К ним относятся: 1) выбор наиболее эффективных типов гибридизации и способов отбора; 2) управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов; 3) искусственное получение наследственно измененных форм живых организмов; 4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных; 5) разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.

При изучении наследственности и изменчивости на разных уровнях организации живой материи (молекулярный, клеточный, организменный, популяционный) в генетике используют разнообразные методы современной биологии: гибридологический, цитогенетический, биохимический, генеалогический, близнецовый, мутационный и др. Однако среди множества методов изучения закономерностей наследственности центральное место принадлежит гибридологическому методу. Суть его заключается в гибридизации (скрещивании) организмов, отличающихся друг от друга по одному или нескольким признакам, с последующим анализом потомства. Этот метод позволяет анализировать закономерности наследования и изменчивости отдельных признаков и свойств организма при половом размножении, а также изменчивость генов и их комбинирование.

Официальным рождением генетики принято считать весну 1900 г., когда три ботаника, независимо друг от друга, в трех разных странах, на разных объектах, пришли к открытию некоторых важнейших закономерностей наследования признаков в потомстве гибридов. Г. де Фриз (Голландия) на основании работы с энотерой, маком, дурманом и другими растениями сообщил «о законе расщепления гибридов»; К. Корренс (Германия) установил закономерности расщепления на кукурузе и опубликовал статью «Закон Грегора Менделя о поведении потомства у расовых гибридов»; в том же году К. Чермак (Австрия) выступил в печати со статьей (Об искусственном скрещивании у Pisum Sativum).
Наука почти не знает неожиданных открытий. Самые блестящие открытия, создающие этапы в ее развитии, почти всегда имеют своих предшественников. Так случилось и с открытием законов наследственности. Оказалось, что три ботаника, открывших закономерность расщепления в потомстве внутривидовых гибридов, всего-навсего «переоткрыли» закономерности наследования, открытые еще в 1865 г. Грегором Менделем и изложенные им в статье «Опыты над растительными гибридами», опубликованной в «трудах» Общества естествоиспытателей в Брюнне (Чехословакия).

Г. Мендель на растениях гороха разрабатывал методы генетического анализа наследования отдельных признаков организма и установил два принципиально важных явления:

1. признаки определяются отдельными наследственными факторами, которые передаются через половые клетки;
2. отдельные признаки организмов при скрещивании не исчезают, а сохраняются в потомстве в том же виде, в каком они были у родительских организмов.

Для теории эволюции эти принципы имели кардинальное значение. Они раскрыли один из важнейших источников изменчивости, а именно механизм сохранения приспособленности признаков вида в ряду поколений. Если бы приспособительные признаки организмов, возникшие под контролем отбора, поглощались, исчезали при скрещивании, то прогресс вида был бы невозможен.
Все последующее развитие генетики было связано с изучением и расширением этих принципов и приложением их к теории эволюции и селекции.

Из установленных принципиальных положений Менделя логически вытекает целый ряд проблем, которые шаг за шагом получают свое разрешение по мере развития генетики. В 1901 г. де Фриз формулирует теорию мутаций, в которой утверждается, что наследственные свойства и признаки организмов изменяются скачкообразно — мутационно.

В 1903 г. датский физиолог растений В. Иоганнсен публикует работу «О наследовании в популяциях и чистых линиях», в которой экспериментально устанавливается, что относящиеся к одному сорту внешне сходные растения являются наследственно различными — они составляют популяцию. Популяция состоит из наследственно различных особей или родственных групп — линий. В этом же исследовании наиболее четко устанавливается, существование двух типов измен6чивости организмов: наследственной, определяемой генами, и ненаследственной, определяемой случайным сочетанием факторов, действующих на проявление признаков.

На следующем этапе развития генетики было доказано, что наследственные формы связаны с хромосомами. Первым фактом, раскрывающим роль хромосом в наследственности, было доказательство роли хромосом в определении пола у животных и открытие механизма расщепления по полу 1: 1.

С 1911 г. Т. Морган с сотрудниками в Колумбийском университете США начинает публиковать серию работ, в которой формулирует хромосомную теорию наследственности. Экспериментально доказывая, что основными носителями генов являются хромосомы, и что гены располагаются в хромосомах линейно.

В 1922 г. Н.И. Вавилов формулирует закон гомологических рядов в наследственной изменчивости, согласно которому родственные по происхождению виды растений и животных имеют сходные ряды наследственной изменчивости. Применяя этот закон, Н.И. Вавилов установил центры происхождения культурных растений, в которых сосредоточено наибольшее разнообразие наследственных форм.

В 1925 г. у нас в стране Г.А. Надсон и Г.С. Филиппов на грибах, а в 1927 г. Г. Мёллер в США на плодовой мушке дрозофиле получили доказательство влияния рентгеновых лучей на возникновение наследственных изменений. При этом было показано, что скорость возникновения мутаций увеличивается более чем в 100 раз. Этими исследованиями была доказана изменчивость генов под влиянием факторов внешней среды. Доказательство влияния ионизирующих излучений на возникновение мутаций привело к созданию нового раздела генетики — радиационной генетики, значение которой еще более выросло с открытием атомной энергии.

В 1934 г. Т. Пайнтер на гигантских хромосомах слюнных желез двукрылых доказал, что прерывность морфологического строения хромосом, выражающаяся в виде различных дисков, соответствует расположению генов в хромосомах, установленному ранее чисто генетическими методами. Этим открытием было положено начало изучению структуры и функционирования гена в клетке.

В период с 40-х годов и по настоящие время сделан ряд открытия (в основном на микроорганизмах) совершенно новых генетических явлений, раскрывших возможности анализа структуры гена на молекулярном уровне. В последние годы с введением в генетику новых методов исследования, заимствованных из микробиологии мы подошли к разгадке того, каким образом гены контролируют последовательность расположения аминокислот в белковой молекуле.

Прежде всего, следует сказать о том, что теперь полностью доказано, что носители наследственности являются хромосомы, которые состоят из пучка молекул ДНК.

Были проведены довольно простые опыты: из убитых бактерий одного штамма, обладающего особым внешним признаком, выделили чистую ДНК и перенесли в живые бактерии другого штамма, после чего размножающиеся бактерии последнего приобрели признак первого штамма. Подобные многочисленные опыты показывают, что носителем наследственности является именно ДНК.

В 1953 г. Ф. Крик (Англия) и Дж. Уотстон (США) расшифровали строение молекулы ДНК. Они установили, что каждая молекула ДНК слагается из двух полидезоксирибонуклеиновых цепочек, спирально закрученных вокруг общей оси.

В настоящее время найдены подходы к решению вопроса об организации наследственного кода и экспериментальной его расшифровке. Генетика совместно с биохимией и биофизикой вплотную подошла к выяснению процесса синтеза белка в клетке и искусственному синтезу белковой молекулы. Этим начинается совершенно новый этап развития не только генетики, но и всей биологии в целом.

Развитие генетики до наших дней — это непрерывно расширяющийся фонт исследований функциональной, морфологической и биохимической дискретности хромосом. В этой области сделано уже много сделано уже очень много, и с каждым днем передний край науки приближается к цели — разгадки природы гена. К настоящему времени установлен целый ряд явлений, характеризующих природу гена. Во-первых, ген в хромосоме обладает свойством самовоспроизводится (авторепродукции); во-вторых, он способен мутационно изменяться; в-третьих, он связан с определенной химической структуры дезоксирибонуклеиновой кислоты — ДНК; в-четвертых, он контролирует синтез аминокислот и их последовательностей в белковой молекулы. В связи с последними исследованиями формируется новое представление о гене как функциональной системе, а действие гена на определение признаков рассматривается в целостной системе генов — генотипе.

Начиная свою работу в период расцвета описательной биологии и первых шагов экспериментальной биологии Кольцов тонко чувствовал тенденции развития биологии и рано осознал значение экспериментального метода. Он проповедовал необходимость экспериментального подхода во всех областях биологии и предсказал его использование даже в эволюционном учении (не противопоставляя экспериментальные методы описательным). Речь шла не о простом биологическом эксперименте, а об использовании методов физики и химии. Кольцов не раз подчеркивал огромное значение для биологии открытия новых форм лучистой энергии, в частности рентгеновских и космических лучей, писал о применении радиоактивных веществ. Чтобы изучить организм в целом, надо использовать все современные знания в области физической и коллоидной химии, необходимо изучать внутри клетки мономолекулярные слои и их роль в разнообразных превращениях веществ. " Биологи ждут, когда эти методы (рентгеноструктурного анализа) будут усовершенствованы настолько, что можно будет при их помощи изучить кристаллическую структуру внутриклеточных скелетных, твердых структур белкового и иного характера". Эта мысль явилась пророческой и реально осуществилась в открытии методом рентгеноструктурного анализа строения молекулы ДНК. Пророческой оказалась и другая идея Кольцова, в которой он также шел от биологии к химии. Исходя из развиваемого им представления, что каждая сложная биологическая молекула возникает из подобной ей уже существующей молекулы, он предсказал, что химики пойдут по пути создания новых молекул в растворах, содержащих необходимые составные части сложных молекул, путем внесения в них затравок готовых молекул той же структуры. Он писал: " Я думаю, что только таким способом удастся синтезировать in vitro белки, и при том не какие-нибудь, а определенные, т. е. синтез которых заранее намечается". Кольцова не оставляла мысль об организации нового научного учреждения - Института экспериментальной биологии.

А.С. Серебровский. Основные работы в области генетики животных, теории гена, генетики популяций. На рубеже 1920—1930-х годов выдвинул ряд важных теоретических положений: сформулировал гипотезу о делимости гена (и возможности измерения его размеров в единицах кроссинговера), ввел понятие генофонда популяции и заложил основы геногеографии. Предложил принципиально новый метод борьбы с насекомыми-вредителями, основанный на массовом выпуске самцов вредных видов с генетическими аномалиями (1940).

Четвериков выдвинул положение о насыщении видов в природе возникающими мутациями и подчеркнул значение генетических процессов (мутация, свободное скрещивание, естественный отбор) и изоляции в видообразовании и эволюции, тем самым связав теорию эволюции Дарвина и генетики. Заложил основы эволюционной генетики. В работах 20-х гг. С.С. Четвериков обосновывает три основные посылки популяционной генетики:

Мутационный процесс в природных условиях протекает точно так же, как и в условиях лаборатории. Поэтому мы вправе распространять по крайней мере некоторые выводы, полученные в лаборатории, на природные ситуации.

Один из таких выводов — непрерывное во времени возникновение новых мутаций у всех видов живых организмов, другой — рецессивность большинства вновь появляющихся мутаций по отношению к аллелям дикого типа, распространенным в природных популяциях.

Характернейшей чертой природных популяций является преобладание в них панмиксии, что делает возможным приложение Закон Харди — Вайнберга.

Одним из основоположников медицинской генетики является выдающийся советский невролог С.Н. Давиденков (1880-1961), начинавший свою плодотворную работу в двадцатых годах на Украине. Он впервые применил идеи генетики в клинике, дал анализ ряда наследственных заболеваний, часть из которых была описана им впервые.Важной заслугой С.Н. Давиденкова является разработка методов медико-генетического консультирования и его первое практическое применение в нашей стране.

Научно-исследовательская деятельность Тимофеева-Ресовского в предвоенной Германии внесла фундаментальный вклад в ряд областей современной биологии. Здесь он открыл и обосновал фундаментальные положения современной генетики развития и популяционной генетики. Он также принял участие в создании основ современной радиационной генетики. В годы Второй мировой войны в роли интернированного иностранца продолжил свою научную деятельность в Берлине.

10. Наследственность и изменчивость свойства, определяющие непрерывность существова­ния и развития живого. Общие представления о химической организации наследственного материала, его свойствах и функциях.

В последовательных поколениях возникают особи, подобные друг другу по морфологическим, физиологическим, биологическим и другим признакам, что обусловливается наследственностью — фундаментальной характеристикой живых форм, под которой понима­ют их свойство обеспечивать структурную и функциональную преем­ственность между поколениями. Поскольку структурные, функцио­нальные и иные признаки организма формируются в процессе онтогенеза, наследственность является также механизмом передачи в ряду поколений способности к процессу индивидуального развития, типичному для особей конкретного биологического вида. Каждый вид организмов сохраняет в ряду поколений характерные черты строения и физиологии: утка выводит утят, пшеница воспроизводит пшеницу, человек рождает человека. Особо важная роль в обеспечении свойства структурно-функциональной преемственности между поколениями при­надлежит хромосомам. Соответственно этому в качестве главной формы выделяют хромосомную или ядерную наследственность. Пере­дача потомку некоторых признаков и свойств происходит при помощи наследственных задатков цитоплазмы. Это дает право говорить о цитоплазматической или внеядерной наследственности. Принципи­альных различий между механизмами хромосомной и цитоплазматиче­ской наследственности не существует — обе формы основываются на передаче в ряду поколений дискретных единиц наследственности генов.

Организмы дочернего и родительского поколений, как правило, не бывают точными копиями друг друга вследствие изменчивости, которая, как и наследственность, служит фунда­ментальной характеристикой живого. Изменчивость проявляется в из­менении от особи к особи или между особями разных поколений наслед­ственных задатков (генов), их сочетаний, индивидуального развития. Закономерности наследственности и изменчивости, биологические механизмы, их обеспечивающие, изучает генетика.

Наследственность и изменчивость тесно связаны с размножением и индивидуальным развитием и служат необходимыми предпосылками процесса эволюции. Благодаря изменчивости существует разнообразие живых форм и, следовательно, возможность освоения различных сред обитания, «всюдность жизни» (В. И. Вернадский). Наследственность сохраняет эволюционный опыт биологического вида в поколениях.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.